流体力学与飞行力学

椭圆内聚激波面间断化过程的激波动力学分析

  • 司东现 ,
  • 李祝飞 ,
  • 姬隽泽 ,
  • 张恩来 ,
  • 杨基明
展开
  • 中国科学技术大学 近代力学系, 合肥 230027

收稿日期: 2021-07-12

  修回日期: 2021-07-20

  网络出版日期: 2021-08-17

基金资助

国家自然科学基金(11872356,11772325,11621202)

Shock dynamics analysis of discontinuity on elliptical converging shock waves

  • SI Dongxian ,
  • LI Zhufei ,
  • JI Junze ,
  • ZHANG Enlai ,
  • YANG Jiming
Expand
  • Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

Received date: 2021-07-12

  Revised date: 2021-07-20

  Online published: 2021-08-17

Supported by

National Natural Science Foundation of China (11872356, 11772325, 11621202)

摘要

针对椭圆内锥几何约束下激波的非均匀汇聚问题,利用高超声速等价原理,将三维定常椭圆内锥激波转化为二维非定常椭圆内收缩运动激波。根据激波动力学原理,发展出一种既能得到非定常激波面演变过程及参数分布,又能沿着激波面追踪扰动传播过程的"波面-扰动追踪法"。该方法不仅具有快速预测激波非均匀汇聚及其演变过程的特点,而且有助于揭示激波面从连续弯曲演变出间断的内在机理。研究表明:初始沿周向强度均匀,而几何形状偏离轴对称的椭圆内聚激波受到自身产生的非均匀"Shock-Compression"扰动,在向中心汇聚的过程中,激波强度非均匀性出现且不断加剧。由于长轴附近的激波面曲率大,激波强度增长得更快。而激波强度的非均匀性会导致扰动的聚集,使得原本连续光滑的激波面出现间断,进而将初始长、短轴附近的激波面分割为强、弱两对激波段。增大长短轴比,椭圆激波的非均匀性演化更快,激波面更早地出现间断。利用"波面-扰动追踪法"对椭圆激波汇聚过程进行分析,为解决三维定常内锥激波的非均匀汇聚问题提供了新的途径。

本文引用格式

司东现 , 李祝飞 , 姬隽泽 , 张恩来 , 杨基明 . 椭圆内聚激波面间断化过程的激波动力学分析[J]. 航空学报, 2022 , 43(12) : 126093 -126093 . DOI: 10.7527/S1000-6893.2021.26093

Abstract

Shock convergence phenomenon generated by an elliptical internal conical model is investigated to reveal the non-uniform effects during the shock convergence process. The three-dimensional steady shock in the elliptical internal conical model is converted into a two-dimensional unsteady elliptical converging shock using the hypersonic equivalence principle. A "shock front-disturbance tracking method" based on the two-dimensional geometrical shock dynamics theory is proposed, which can be used to calculate the positions and parameters of the moving shock and track the disturbances along the shock front simultaneously. With the help of this new method, the non-uniform characteristics of the two-dimensional moving shock during the convergence process is predicted rapidly, and the underlying mechanisms of the formation of discontinuity on the shock front is revealed. The results show that the strength of the elliptical shock whose initial strength is circumferentially uniform but initial curvature is non-uniform becomes increasingly non-uniform during the convergence process with the influence of "Shock-Compression" disturbances generated by the shock front itself. The shock front near the major axis strengthens faster due to its greater shock curvature. As the intensified non-uniformity of the shock strength induces the "Shock-Compression" disturbances to aggregate, discontinuities appear on the shock front. As a result, the originally continuous and smooth shock front is divided into two pairs of shock segments with different strengths. The larger the aspect ratio of the initial elliptical shock is, the faster the non-uniformity of the shock evolves, and the sooner the discontinuity appears. As illustrated in the analyses of elliptical converging shocks, the present "shock front-disturbance tracking method" provides a new approach to solve the non-uniform convergence of three-dimensional internal conical shocks.

参考文献

[1] YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets:AIAA-2011-2269[R]. Reston:AIAA, 2011.
[2] GOLDFELD M A, NESTOULIA R V. Numerical and experimental studies of 3D hypersonic inlet[J]. Journal of Thermal Science, 2002, 11(3):198-206.
[3] ZUO F Y, MÖLDER S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines[J]. Progress in Aerospace Sciences, 2019, 106:108-144.
[4] 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3):43-59. QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3):43-59(in Chinese).
[5] LI Y M, LI Z F, YANG J M. Tomography-like flow visualization of a hypersonic inward-turning inlet[J]. Chinese Journal of Aeronautics, 2021, 34(1):44-49.
[6] 张文浩, 柳军, 丁峰. 内转式进气道/冯·卡门乘波体一体化设计方法[J]. 航空学报, 2020, 41(3):123502. ZHANG W H, LIU J, DING F. Integrated design method of inward turning inlet/Von Karman waverider[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123502(in Chinese).
[7] 尤延铖, 梁德旺. 内乘波式进气道内收缩基本流场研究[J]. 空气动力学学报, 2008, 26(2):203-207. YOU Y C, LIANG D W. Investigation of internal compression flowfield for internal waverider-derived inlet[J]. Acta Aerodynamica Sinica, 2008, 26(2):203-207(in Chinese).
[8] SHOESMITH B, MÖLDER S, OGAWA H, et al. Shock reflection in axisymmetric internal flows[C]//International Conference on RailNewcastle Talks. Cham:Springer, 2017:355-366.
[9] 姬隽泽, 李祝飞, 张恩来, 等. 近轴对称内收缩流场中的激波干扰[J]. 实验流体力学, 2019, 33(5):2-10. JI J Z, LI Z F, ZHANG E L, et al. Shock interactions in near-axisymmetric internal contraction flows[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5):2-10(in Chinese).
[10] MÖLDER S. Internal, axisymmetric, conical flow[J]. AIAA Journal, 1967, 5(7):1252-1255.
[11] TIMOFEEV E, MÖLDER S, VOINOVICH P, et al. Shock wave reflections in axisymmetric flow[C]//Proceedings of the 23rd International Symposium on Shock Waves, 2001:1486-1493.
[12] ISAKOVA N P, KRAIKO A N, P'YANKOV K S, et al. The amplification of weak shock waves in axisymmetric supersonic flow and their reflection from an axis of symmetry[J]. Journal of Applied Mathematics and Mechanics, 2012, 76(4):451-465.
[13] GOUNKO Y P. Patterns of steady axisymmetric supersonic compression flows with a Mach disk[J]. Shock Waves, 2017, 27(3):495-506.
[14] FILIPPI A A, SKEWS B W. Supersonic flow fields resulting from axisymmetric internal surface curvature[J]. Journal of Fluid Mechanics, 2017, 831:271-288.
[15] SMART M K, TREXLER C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2004, 20(2):288-293.
[16] 王卫星, 李博, 郭荣伟. 不同反压下椭圆形隔离段流场特征与气动性能[J]. 航空动力学报, 2010, 25(3):647-653. WANG W X, LI B, GUO R W. Flow characteristic and aerodynamic performance in elliptic shape isolator at different back pressures[J]. Journal of Aerospace Power, 2010, 25(3):647-653(in Chinese).
[17] ZHANG E L, LI Z F, JI J Z, et al. Converging near-elliptic shock waves[J]. Journal of Fluid Mechanics, 2021, 909:A2.
[18] 姬隽泽, 张恩来, 司东现, 等. 内聚锥形激波的非均匀强化与结构演变特征[J]. 气体物理, 2021, 6(3):1-14. JI J Z, ZHANG E L, SI D X, et al. Non-uniform intensification behaviors of a converging conical shock wave[J]. Physics of Gases, 2021, 6(3):1-14(in Chinese).
[19] RYLOV A I. On the impossibility of regular reflection of a steady-state shock wave from the axis of symmetry[J]. Journal of Applied Mathematics and Mechanics, 1990, 54(2):201-203.
[20] MÖLDER S. Curved aerodynamic shock waves[D]. Montreal:McGill University, 2012:32-73.
[21] MÖLDER S. Curved shock theory[J]. Shock Waves, 2016, 26(4):337-353.
[22] MÖLDER S. Flow behind concave shock waves[J]. Shock Waves, 2017, 27(5):721-730.
[23] 杨旸. 三维激波相互作用的复杂流动研究[D]. 北京:中国科学院大学, 2012:48-63. YANG Y. Investigations on the complex flows induced by three-dimensional shock interactions[D]. Beijing:University of Chinese Academy of Sciences, 2012:48-63(in Chinese).
[24] 项高翔. 三维激波干扰理论与应用研究[D]. 北京:中国科学院大学, 2017:37-69. XIANG G X. Theory of three-dimensional shock interaction and its application[D]. Beijing:University of Chinese Academy of Sciences, 2017:37-69(in Chinese).
[25] ANDERSON JR J D. A survey of modern research in hypersonic aerodynamics:AIAA-1984-1578[R]. Reston:AIAA, 1984.
[26] ANDERSON JR J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston:AIAA, 2006:103-176.
[27] HAN Z Y, YIN X Z. Shock dynamics[M]. Beijing:Science Press, 1993:1-62.
[28] 谢鹏. 两个三波点相互作用的激波动力学分析和气体动力学分析[D]. 合肥:中国科学技术大学, 2004:3-4. XIE P. Shock dynamics and gas dynamics analysis of the interaction of two triple points[D]. Hefei:University of Science and Technology of China, 2004:3-4(in Chinese).
[29] 詹东文. 一种激波增强管壁型线设计方法[D]. 合肥:中国科学技术大学, 2018:15-28. ZHAN D W. An investigation of the channel profile design for shock wave enhancement[D]. Hefei:University of Science and Technology of China, 2018:15-28(in Chinese).
[30] 彭荣强. 几何激波动力学在激波绕射反射和聚焦中的应用[J]. 四川工业学院学报, 1996, 15(1):50-54. PENG R Q. Applications of geometrical shock dynamics in shock diffraction reflection and focus[J]. Journal of Sichuan Institute of Technology, 1996, 15(1):50-54(in Chinese).
[31] HENSHAW W D, SMYTH N F, SCHWENDEMAN D W. Numerical shock propagation using geometrical shock dynamics[J]. Journal of Fluid Mechanics, 1986, 171:519-545.
[32] APAZIDIS N. Focusing of strong shocks in an elliptic cavity[J]. Shock Waves, 2003, 13(2):91-101.
[33] RIDOUX J, LARDJANE N, MONASSE L, et al. Beyond the limitation of geometrical shock dynamics for diffraction over wedges[J]. Shock Waves, 2019, 29(6):833-855.
[34] ZHAI Z G, LIU C L, QIN F H, et al. Generation of cylindrical converging shock waves based on shock dynamics theory[J]. Physics of Fluids, 2010, 22(4):041701.
[35] ZHAN D W, LI Z F, YANG J T, et al. Note:A contraction channel design for planar shock wave enhancement[J]. Review of Scientific Instruments, 2018, 89(5):056104.
[36] CHESTER W. CXLV. The quasi-cylindrical shock tube[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(371):1293-1301.
[37] CHISNELL R F. The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves[J]. Journal of Fluid Mechanics, 1957, 2(3):286-298.
[38] WHITHAM G B. On the propagation of shock waves through regions of non-uniform area or flow[J]. Journal of Fluid Mechanics, 1958, 4(4):337-360.
[39] WHITHAM G B. A new approach to problems of shock dynamics Part I Two-dimensional problems[J]. Journal of Fluid Mechanics, 1957, 2(2):145-171.
[40] GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of Computation, 1998, 67(221):73-85.
[41] AKIMA H. A new method of interpolation and smooth curve fitting based on local procedures[J]. Journal of the ACM, 1970, 17(4):589-602.
[42] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 2版. 北京:高等教育出版社, 2012:135-143. TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. 2nd ed. Beijing:Higher Education Press, 2012:135-143(in Chinese).
[43] 王继海. 二维非定常流和激波[M]. 北京:科学出版社, 1994:149-271. WANG J H. Two-dimensional unsteady flow and shock waves[M]. Beijing:Science Press, 1994:149-271(in Chinese).
文章导航

/