材料工程与机械制造

平均应力对AZ31B挤压镁合金棘轮行为的影响

  • 韩重韬 ,
  • 宋令慧 ,
  • 段国升 ,
  • 武保林
展开
  • 1. 沈阳航空航天大学 安全工程学院, 沈阳 110136;
    2. 齐鲁工业大学(山东省科学院)山东省科学院新材料研究所 山东省轻质高强金属材料 重点实验室, 济南 250014

收稿日期: 2021-07-05

  修回日期: 2021-07-27

  网络出版日期: 2021-08-17

基金资助

国家自然科学基金(51901140);辽宁省自然科学基金(2019-ZD-0238)

Effects of mean stress on ratcheting behavior of extruded AZ31B magnesium alloy

  • HAN Chongtao ,
  • SONG Linghui ,
  • DUAN Guosheng ,
  • WU Baolin
Expand
  • 1. School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China;
    2. Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province, Advanced Materials Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

Received date: 2021-07-05

  Revised date: 2021-07-27

  Online published: 2021-08-17

Supported by

National Natural Science Foundation of China (51901140); Natural Science Foundation of Liaoning Province (2019-ZD-0238)

摘要

为探讨非对称循环应力作用下镁合金的棘轮行为,对AZ31B挤压镁合金进行了室温下压-压应力控制的循环实验,研究了不同平均应力下AZ31B挤压镁合金棘轮应变及其演化过程,讨论了平均应力作用下循环变形过程的主导塑性变形机制及其对棘轮行为的影响。结果表明,AZ31B挤压镁合金在压-压循环过程中存在明显的棘轮现象,相比于位错滑移,孪生-去孪生机制对棘轮应变的形成起到关键作用,决定了棘轮应变的变化率。在平均应力为0、-45、-75、-135 MPa时,循环过程中形成的棘轮应变随平均压应力的增加而增加,经一定循环次数后趋于稳定,棘轮应变率随循环次数的增加先急剧下降后维持不变。

本文引用格式

韩重韬 , 宋令慧 , 段国升 , 武保林 . 平均应力对AZ31B挤压镁合金棘轮行为的影响[J]. 航空学报, 2022 , 43(12) : 426060 -426060 . DOI: 10.7527/S1000-6893.2021.26060

Abstract

The uniaxial ratcheting behaviors of an extruded AZ31B magnesium alloy was investigated with a series of compression-compression cyclic stress-controlled experiments at ambient temperature. Effects of different mean stresses on the ratcheting stress and its evolution were examined. The mechanism of dominant plastic deformation under mean stress and its effect on the ratcheting behavior in the process of cyclic deformation were discussed. Results show that remarkable ratcheting behavior occurs in the extruded AZ31B magnesium alloy in the process of compression-compression cycles. Instead of the dislocation slip, the twinning-detwinning mechanism plays a key role in the formation of ratcheting strain and determines the rate of ratcheting strain. When the mean stress is 0, -45, -75, -135 MPa, the ratcheting strain formed in the cyclic process increases with the increase of the compressive mean stress, and tends to be stable after a certain number of cycles. The ratcheting strain rate decreases sharply with the increase of the number of cycles until it remains unchanged.

参考文献

[1] MORDIKE B L, EBERT T. Magnesium:Properties-Applications-Potential[J]. Materials Science and Engineering:A, 2001, 302(1):37-45.
[2] 丁文江, 付彭怀, 彭立明, 等. 先进镁合金材料及其在航空航天领域中的应用[J]. 航天器环境工程, 2011, 28(2):103-109. DING W J, FU P H, PENG L M, et al. Advanced magnesium alloys and their applications in aerospace[J]. Spacecraft Environment Engineering, 2011, 28(2):103-109(in Chinese).
[3] 周霞, 文冬, 沈梦祺, 等. AZ31镁合金板热成形中的屈服和损伤:本构实现与数值分析[J]. 航空学报, 2018, 39(5):421665. ZHOU X, WEN D, SHEN M Q, et al. Anisotropic yield and damage in warm forming of AZ31 magnesium alloy sheet:implementation of constitutive model and numerical analysis[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):421665(in Chinese).
[4] GRYGUC A, BEHRAVESH S B, SHAHA S K, et al. Low-cycle fatigue characterization and texture induced ratcheting behaviour of forged AZ80 Mg alloys[J]. International Journal of Fatigue, 2018, 116:429-438.
[5] 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5):524651. WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524651(in Chinese).
[6] KANG G Z, LI H. Review on cyclic plasticity of magnesium alloys:Experiments and constitutive models[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(4):567-589.
[7] LEI Y, LI H, LIU Y J, et al. Experimental study on uniaxial ratchetting-fatigue interaction of extruded AZ31 magnesium alloy with different plastic deformation mechanisms[J]. Journal of Magnesium and Alloys, 2021
[8] ALBINMOUSA J, JAHED H, LAMBERT S. Cyclic behaviour of wrought magnesium alloy under multiaxial load[J]. International Journal of Fatigue, 2011, 33(8):1127-1139.
[9] JAHED H, ALBINMOUSA J. Multiaxial behaviour of wrought magnesium alloys-A review and suitability of energy-based fatigue life model[J]. Theoretical and Applied Fracture Mechanics, 2014, 73:97-108.
[10] 罗秀芳, 杨婷慧, 李政, 等. 单轴应力循环作用下AZ91D镁合金的棘轮行为[J]. 中国有色金属学报, 2009, 19(10):1726-1732. LUO X F, YANG T H, LI Z, et al. Ratchetting behavior of AZ91D magnesium alloy under uniaxial cyclic stressing[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(10):1726-1732(in Chinese).
[11] 陈凌, 张贤明, 刘飞, 等. AZ91D室温环境棘轮及其低周疲劳行为[J]. 材料科学与工程学报, 2017, 35(5):741-746. CHEN L, ZHANG X M, LIU F, et al. Ratcheting and low cycle fatigue behavior of AZ91D at room temperature[J]. Journal of Materials Science and Engineering, 2017, 35(5):741-746(in Chinese).
[12] LIN Y C, CHEN X M, CHEN G. Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation[J]. Journal of Alloys and Compounds, 2011, 509(24):6838-6843.
[13] LIN Y C, LIU Z H, CHEN X M, et al. Uniaxial ratcheting and fatigue failure behaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclic stress-controlled loadings[J]. Materials Science and Engineering:A, 2013, 573:234-244.
[14] LIN Y C, LIU Z H, CHEN X M, et al. Stress-based fatigue life prediction models for AZ31B magnesium alloy under single-step and multi-step asymmetric stress-controlled cyclic loadings[J]. Computational Materials Science, 2013, 73:128-138.
[15] XIONG Y, YU Q, JIANG Y Y. An experimental study of cyclic plastic deformation of extruded ZK60 magnesium alloy under uniaxial loading at room temperature[J]. International Journal of Plasticity, 2014, 53:107-124.
[16] XIONG Y, JIANG Y Y. Fatigue of ZK60 magnesium alloy under uniaxial loading[J]. International Journal of Fatigue, 2014, 64:74-83.
[17] WU B L, SONG L H, DUAN G S, et al. Effect of cyclic frequency on uniaxial ratcheting behavior of a textured AZ31B magnesium alloy under stress control[J]. Materials Science and Engineering:A, 2020, 795:139675.
[18] KANG G Z, YU C, LIU Y J, et al. Uniaxial ratchetting of extruded AZ31 magnesium alloy:Effect of mean stress[J]. Materials Science and Engineering:A, 2014, 607:318-327.
[19] LIU Y J, KANG G Z, GAO Q. A multiaxial stress-based fatigue failure model considering ratchetting-fatigue interaction[J]. International Journal of Fatigue, 2010, 32(4):678-684.
[20] ZHANG X P, CASTAGNE S, GU C F, et al. Effects of annealing treatment on the ratcheting behavior of extruded AZ31B magnesium alloy under asymmetrical uniaxial cyclic loading[J]. Journal of Materials Science, 2011, 46(4):1124-1131.
[21] LI H, KANG G Z, YU C. Modeling uniaxial ratchetting of magnesium alloys by a new crystal plasticity considering dislocation slipping, twinning and detwinning mechanisms[J]. International Journal of Mechanical Sciences, 2020, 179:105660.
[22] YU Q, ZHANG J X, JIANG Y Y, et al. Multiaxial fatigue of extruded AZ61A magnesium alloy[J]. International Journal of Fatigue, 2011, 33(3):437-447.
[23] LI B, JOSHI S P, ALMAGRI O, et al. Rate-dependent hardening due to twinning in an ultrafine-grained magnesium alloy[J]. Acta Materialia, 2012, 60(4):1818-1826.
[24] OPPEDAL A L, KADIRI H EL, TOMÉ C N, et al. Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium[J]. International Journal of Plasticity, 2012, 30-31:41-61.
[25] LIN J B, PENG L M, WANG Q D, et al. Anisotropic plastic deformation behavior of as-extruded ZK60 magnesium alloy at room temperature[J]. Science in China Series E:Technological Sciences, 2009, 52(1):161-165.
[26] HUPPMANN M, LENTZ M, CHEDID S, et al. Analyses of deformation twinning in the extruded magnesium alloy AZ31 after compressive and cyclic loading[J]. Journal of Materials Science, 2011, 46(4):938-950.
文章导航

/