流体力学与飞行力学

环形及其组合体喷流的减阻防热机理

  • 张道毅 ,
  • 周超英
展开
  • 哈尔滨工业大学(深圳)机电工程与自动化学院, 深圳 518000

收稿日期: 2021-07-05

  修回日期: 2021-07-20

  网络出版日期: 2021-08-17

基金资助

深圳市科技计划基础研究项目(JCYJ20170307151117299)

Drag reduction and heat protection mechanism of annular jet and combined jet

  • ZHANG Daoyi ,
  • ZHOU Chaoying
Expand
  • School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China

Received date: 2021-07-05

  Revised date: 2021-07-20

  Online published: 2021-08-17

Supported by

Basic Research Project of Shenzhen Science and Technology Program (JCYJ20170307151117299)

摘要

为了分析环形组合体喷流对飞行器表面减阻降热的影响,以半球头体环形逆向喷流为研究对象,在控制喷流质量流不变以及非设计工况的情况下,研究了环形喷流以及不同组合形式环形喷流的喷口尺寸对高超声速逆向喷流流场模态变化以及飞行器表面热流的影响。研究发现随着环形喷流喷口尺寸的增大,长短模态转换的临界喷压比值会随之减小;在组合喷流中,环形喷口尺寸越大,中心喷口尺寸越小,长短模态转换的临界喷压比越大。环形喷流和组合形式的环形喷流相对于传统的中心喷流有更好的降热效果,且其喷口尺寸对最大热流峰值位置也有一定的影响。

本文引用格式

张道毅 , 周超英 . 环形及其组合体喷流的减阻防热机理[J]. 航空学报, 2022 , 43(12) : 126056 -126056 . DOI: 10.7527/S1000-6893.2021.26056

Abstract

In order to analyze the influence of annular composite jet on drag and heat reduction of aircraft surface, this paper studies the influence of different sizes of annular jet and combined jet on the hypersonic reverse jet under the off-design condition by taking the annular reverse jet of the hemispherical head body as the research object. The result shows that as the size of the annular jet nozzle increases, the critical spray pressure ratio of the long-short modal conversion will decrease; in the combined jet, the larger the annular nozzle size, the smaller the center nozzle size and the greater the critical spray pressure ratio of the long-short modal transition. It is concluded that annular jets have a better heat reduction effect than traditional central jets, and the size of combined jet has a certain influence on the maximum heat flow peak position.

参考文献

[1] 朱鸿绪, 刘燕斌, 曹瑞, 等. 高超声速飞行器底层性能评价指标的可行性分析[J]. 航空学报, 2020, 41(3):323259. ZHU H X, LIU Y B, CAO R, et al. Feasibility analysis for underlying indictors in control performance evaluation of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):323259(in Chinese).
[2] 陈冰, 郑勇, 陈张雷, 等. 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020, 41(8):623686. CHEN B, ZHENG Y, CHEN Z L, et al. A review of celestial navigation system on near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):623686(in Chinese).
[3] 吴大方, 林鹭劲, 吴文军, 等. 1500℃极端高温环境下高超声速飞行器轻质隔热材料热/振联合试验[J]. 航空学报, 2020, 41(7):223612. WU D F, LIN L J, WU W J, et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1500℃[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):223612(in Chinese).
[4] AHMED M Y M, QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6):425-449.
[5] BARZEGAR GERDROODBARY M, IMANI M, GANJI D D. Heat reduction using conterflowing jet for a nose cone with aerodisk in hypersonic flow[J]. Aerospace Science and Technology, 2014, 39:652-665.
[6] HUANG W, LIU J, XIA Z X. Drag reduction mechanism induced by a combinational opposing jet and spike concept in supersonic flows[J]. Acta Astronautica, 2015, 115:24-31.
[7] GERDROODBARY M B, HOSSEINALIPOUR S M. Numerical simulation of hypersonic flow over highly blunted cones with spike[J]. Acta Astronautica, 2010, 67(1/2):180-193.
[8] GERDROODBARY M B. Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body[J]. Shock Waves, 2014, 24(5):537-543.
[9] SCHNEPF C, WYSOCKI O, SCHVLEIN E. Wave drag reduction due to a self-aligning aerodisk[C]//Progress in Flight Physics-Volume 7. Les Ulis:EDP Sciences, 2015:475-488.
[10] KREMEYER K. Lines of energy deposition for supersonic/hypersonic temperature/drag-reduction and vehicle control[J]. AIP Conference Proceedings, 2008, 997(1):353-366.
[11] SPERBER D, ECKEL H A, STEIMER S, et al. Objectives of laser-induced energy deposition for active flow control[J]. Contributions to Plasma Physics, 2012, 52(7):636-643.
[12] RIGGINS D, NELSON H F, JOHNSON E. Blunt-body wave drag reduction using focused energy deposition[J]. AIAA Journal, 1999, 37(4):460-467.
[13] LOPATOFF M. Wind-flow study of pressure-drag reduction at transonic speed by projecting a jet of air from the nose of a prolate spheroid of fineness ratio 6[R]. Washington, D.C.:NACA, 1951.
[14] LOVE E S. The effects of a small jet of air exhausting from the nose of a body of revolution in supersonic flow[R]. Washington, D.C.:NACA, 1952.
[15] WATT G A. An experimental investigation of a sonic jet directed upstream against a uniform supersonic flow[R]. Toronto:Institute of Aerophysics, University of Toronto, 1956.
[16] ROMEO D J, STERRETT J R. Exploratory investigation of the effect of a forward-facing jet on the bow shock of a blunt body in a Mach number 6 free stream[M]. Washington, D.C.:NASA, 1963.
[17] JARVINEN P O,ADAMS R H. The effects of retrorockets on the aerodynamic characteristics of conical aeroshell planetary entry vehicles[R].New York:ASME,1970.
[18] FOMIN V M, MASLOV A A, SHASHKIN A P, et al. Flow regimes formed by a counterflow jet in a supersonic flow[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(5):757-764.
[19] MALMUTH N D, FOMIN V M, MASLOV A A. Influence of a counterflow plasma jet on supersonic blunt body pressures:AIAA-1999-4883[R]. Reston:AIAA, 1999.
[20] FOMIN V M, MASLOV A A, MALMUTH N D, et al. Influence of a counterflow plasma jet on supersonic blunt-body pressures[J]. AIAA Journal, 2002, 40(6):1170-1177.
[21] SHANG J S, HAYES J, WURTZLER K, et al. Jet-spike bifurcation in high-speed flows[J]. AIAA Journal, 2001, 39(6):1159-1165.
[22] SHANG J S, HAYES J, MENART J. Hypersonic flow over a blunt body with plasma injection[J]. Journal of Spacecraft and Rockets, 2002, 39(3):367-375.
[23] SHANG J S. Plasma injection for hypersonic blunt-body drag reduction[J]. AIAA Journal, 2002, 40(6):1178-1186.
[24] 田婷, 阎超. 超声速场中的反向喷流数值模拟[J]. 北京航空航天大学学报, 2008, 34(1):9-12. TIAN T, YAN C. Numerical simulation on opposing jet in hypersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(1):9-12(in Chinese).
[25] 邓立君. 高超声速楔形体逆向喷流减阻及前缘优化数值研究[D]. 哈尔滨:哈尔滨工业大学, 2011. DENG L J. Numerical study on drag reduction of reverse jet on a hypersonic wedge and its shape optimizations[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese).
[26] 戎宜生. 飞行器迎风前缘逆喷与发汗防热机理及复杂流动算法研究[D]. 长沙:国防科技大学, 2012. RONG Y S. Research on the thermal protection by opposing jet and transpiration for vehicle leading edge and the complex flow algorithm[D]. Changsha:National University of Defense Technology, 2012(in Chinese).
[27] 陆海波. 迎风凹腔与逆向喷流组合强化防热结构复杂流场和传热特性研究[D]. 长沙:国防科技大学, 2012. LU H B. Research on complicated flow field and heat transfer characteristic of forward-facing cavity combined with opposing jet fortified thermal protection configuration[D]. Changsha:National University of Defense Technology, 2012(in Chinese).
[28] ZHOU C Y, JI W Y. A three-dimensional numerical investigation on drag reduction of a supersonic spherical body with an opposing jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228:163-177.
[29] 李珺,王俊峰,赵雅甜,等.面向非设计工况的激波针-喷流复合构型研究[J].航空学报, 2022, 43(9):125949. LI J, WANG J F, ZHAO Y T, et al. Research on combinational configuration of spike and multi-jets in off-design regimes[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):125949(in Chinese).
[30] FARR R, CHANG C L, JONES J H, et al. On the comparison of the long penetration mode (LPM) supersonic counterflowing jet to the supersonic screech jet:AIAA-2015-3126[R]. Reston:AIAA, 2015.
[31] VENKATACHARI B S, CHENG G, CHANG C L, et al. Long penetration mode counterflowing jets for supersonic slender configurations-A numerical study:AIAA-2013-2662[R]. Reston:AIAA, 2013.
[32] VENKATACHARI B S, MULLANE M, CHENG G, et al. Numerical study of counterflowing jet effects on supersonic slender-body configurations:AIAA-2015-3010[R]. Reston, Virginia:AIAA, 2015.
[33] DENG F, XIE F, HUANG W, et al. Numerical exploration on jet oscillation mechanism of counterflowing jet ahead of a hypersonic lifting-body vehicle[J]. Science China Technological Sciences, 2018, 61(7):1056-1071.
[34] MARLEY C D, RIGGINS D W. Numerical study of novel drag reduction techniques for hypersonic blunt bodies[J]. AIAA Journal, 2011, 49(9):1871-1882.
[35] ZHANG W Q, WANG X, ZHANG Z J, et al. Transient numerical simulation of hemispherical cone with combined opposing jet in hypersonic flow[J]. Acta Astronautica, 2020, 175:327-337.
[36] SHEN B X, LIU W Q. Thermal protection performance of opposing jet generating with solid fuel[J]. Acta Astronautica, 2018, 144:90-96.
[37] DESAI S, PRAKASH K V, KULKARNI V, et al. Universal scaling parameter for a counter jet drag reduction technique in supersonic flows[J]. Physics of Fluids, 2020, 32(3):036105.
[38] FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2):337-368.
[39] 纪文英. 附属杆对圆柱绕流减阻特性的三维数值模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2008. JI W Y. Three-dimensional numerical simulation study on drag reduction characteristics of auxiliary rod around cylinder[D]. Harbin:Harbin Institute of Technology, 2008(in Chinese).
[40] ZHANG R R, DONG M Z, HUANG W, et al. Drag and heat flux reduction mechanism induced by the combinational forward-facing cavity and pulsed counterflowing jet configuration in supersonic flows[J]. Acta Astronautica, 2019, 160:62-75.
[41] EGHLIMA Z, MANSOUR K, FARDIPOUR K. Heat transfer reduction using combination of spike and counterflow jet on blunt body at high Mach number flow[J]. Acta Astronautica, 2018, 143:92-104.
[42] ZHU L, LI Y K, GONG L K, et al. Coupled investigation on drag reduction and thermal protection mechanism induced by a novel combinational spike and multi-jet strategy in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2019, 131:944-964.
[43] SHEN B X, LIU W Q, YIN L. Drag and heat reduction efficiency research on opposing jet in supersonic flows[J]. Aerospace Science and Technology, 2018, 77:696-703.
[44] LI L Q, HUANG W, YAN L. Mixing augmentation induced by a vortex generator located upstream of the transverse gaseous jet in supersonic flows[J]. Aerospace Science and Technology, 2017, 68:77-89.
[45] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究[J]. 物理学报, 2012, 61(18):184401. NIE T, LIU W Q. Study of coupled fluid and solid for a hypersonic lending edge[J]. Acta Physica Sinica, 2012, 61(18):184401(in Chinese).
[46] WANG X Y, YAN C, ZHENG W L, et al. Laminar and turbulent heating predictions for mars entry vehicles[J]. Acta Astronautica, 2016, 128:217-228.
[47] HAYASHI K, ASO S, TANI Y. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets, 2006, 43(1):233-235.
文章导航

/