材料工程与机械制造

考虑瞬态效应的周期性多材料传热结构拓扑优化

  • 李信卿 ,
  • 赵清海 ,
  • 龙凯 ,
  • 张洪信
展开
  • 1. 青岛大学 机电工程学院, 青岛 266071;
    2. 青岛大学 电动汽车智能化动力集成技术国家地方联合工程研究中心, 青岛 266071;
    3. 华北电力大学 新能源电力系统国家重点实验室, 北京 102206

收稿日期: 2021-06-16

  修回日期: 2021-07-05

  网络出版日期: 2021-08-17

基金资助

国家自然科学基金(52175236);中国博士后科学基金面上项目(2017M612191)

Topology optimization of periodic multi-material heat conduction structures considering transient effects

  • LI Xinqing ,
  • ZHAO Qinghai ,
  • LONG Kai ,
  • ZHANG Hongxin
Expand
  • 1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China;
    2. National and Local Union Engineering Research Center of Electric Vehicle Intelligent Power Integration Technology, Qingdao University, Qingdao 266071, China;
    3. State Key Laboratory for Alternative Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China

Received date: 2021-06-16

  Revised date: 2021-07-05

  Online published: 2021-08-17

Supported by

National Natural Science Foundation of China (52175236); China Postdoctoral Science Foundation (2017M612191)

摘要

常规传热结构的周期性拓扑优化通常基于稳态热传导模型,并未考虑瞬态效应对设计结果的影响。针对瞬态热传导目标响应最大值最小化问题,搭建基于Ordered-RAMP法的多材料插值模型,提出一种周期性多材料瞬态热传导拓扑优化设计方法。该方法分别以时间历程内传热结构最高温度最小化与最高散热耗能最小化为设计目标,引入聚合函数处理设计变量的瞬态响应不可微问题,并通过重新分配单元目标函数基值实现子区域周期性约束设置。数值算例验证了所提方法的有效性和可行性。结果表明:不同热负荷工作时间下,均可得到材料分布合理、边界清晰的周期性拓扑构型,并能实现不同设计目标下的性能最优;周期性约束会对拓扑构型产生影响,且子区域数目越多优化目标越差。

本文引用格式

李信卿 , 赵清海 , 龙凯 , 张洪信 . 考虑瞬态效应的周期性多材料传热结构拓扑优化[J]. 航空学报, 2022 , 43(12) : 425964 -425964 . DOI: 10.7527/S1000-6893.2021.25964

Abstract

Periodic topology optimization of conventional heat transfer structures is based on the steady-state model without considering the influence of transient effects. Based on the multi-material interpolation model of Ordered-RAMP, a periodic transient heat conduction topology optimization model is constructed to minimize the maximum temperature and the maximum heat dissipation energy minimization of the heat conduction structure during the whole working time. Considering the transient heat transfer effect, the aggregation function is set in the mathematical model instead of the original design target, and the transient heat sensitivity format is derived by the concomitant variable method. Sub-region periodic constraint setting is achieved by reassigning the base value of the cell objective function. The numerical examples verify the effectiveness and feasibility of the proposed method. The results show that the periodic topological configuration with reasonable material distribution and clear boundary can be obtained under different thermal load working time, and the optimal performance can be achieved under different design objectives. The periodic constraint affects the topological configuration, and the more the number of sub-regions the worse the optimization objective.

参考文献

[1] ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10):1929-1953.
[2] SIGMUND O. Materials with prescribed constitutive parameters:An inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17):2313-2329.
[3] SIGMUND O, TORQUATO S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(6):1037-1067.
[4] MOSES E, FUCHS M B, RYVKIN M. Topological design of modular structures under arbitrary loading[J]. Structural and Multidisciplinary Optimization, 2002, 24(6):407-417.
[5] HUANG X, XIE Y M. Optimal design of periodic structures using evolutionary topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36(6):597-606.
[6] 邢誉峰, 陈磊. 若干周期性复合材料结构数学均匀化方法的计算精度[J]. 航空学报, 2015, 36(5):1520-1529. XING Y F, CHEN L. Accuracy analysis of mathematical homogenization method for several periodical composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1520-1529(in Chinese).
[7] 李信卿, 赵清海, 张洪信, 等. 周期性功能梯度结构稳态热传导拓扑优化设计[J]. 中国机械工程, 2021, 32(19):2348-2356. LI X Q, ZHAO Q H, ZHANG H X, et al. Steady-state heat conduction topology optimization design for periodic functional gradient structures[J]. China Mechanical Engineering, 2021, 32(19):2348-2356(in Chinese).
[8] 贾娇, 程伟, 龙凯. 基于SIMP法的周期性传热材料拓扑优化[J]. 北京航空航天大学学报, 2015, 41(6):1042-1048. JIA J, CHENG W, LONG K. Topology optimization for periodic thermal conductive material using SIMP method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1042-1048(in Chinese).
[9] 赵清海, 张洪信, 华青松, 等. 周期性多材料结构稳态热传导拓扑优化设计[J]. 工程力学, 2019, 36(3):247-256. ZHAO Q H, ZHANG H X, HUA Q S, et al. Multi-material topology optimization of steady-state heat conduction structure under periodic constraint[J]. Engineering Mechanics, 2019, 36(3):247-256(in Chinese).
[10] YAN P, JIANG C P, SONG F, et al. Estimation of transverse thermal conductivity of doubly-periodic fiber reinforced composites[J]. Chinese Journal of Aeronautics, 2010, 23(1):54-60.
[11] ZHAO Q H, ZHANG H X, WANG F J, et al. Topology optimization of non-Fourier heat conduction problems considering global thermal dissipation energy minimization[J]. Structural and Multidisciplinary Optimization, 2021, 64(3):1385-1399.
[12] TURTELTAUB S. Optimal material properties for transient problems[J]. Structural and Multidisciplinary Optimization, 2001, 22(2):157-166.
[13] GUEDES J M, LUBRANO E, RODRIGUES H C, et al. Hierarchical optimization of material and structure for thermal transient problems[M]//Solid Mechanics and its Applications. Berlin:Springer, 2006:527-536.
[14] ZHUANG C G, XIONG Z H, DING H. A level set method for topology optimization of heat conduction problem under multiple load cases[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(4-6):1074-1084.
[15] ZHUANG C G, XIONG Z H. Temperature-constrained topology optimization of transient heat conduction problems[J]. Numerical Heat Transfer, Part B:Fundamentals, 2015, 68(4):366-385.
[16] WU S H, ZHANG Y C, LIU S T. Topology optimization for minimizing the maximum temperature of transient heat conduction structure[J]. Structural and Multidisciplinary Optimization, 2019, 60(1):69-82.
[17] WU S H, ZHANG Y C, LIU S T. Transient thermal dissipation efficiency based method for topology optimization of transient heat conduction structures[J]. International Journal of Heat and Mass Transfer, 2021, 170:121004.
[18] ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing:Status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1):91-110.
[19] ZUO W J, SAITOU K. Multi-material topology optimization using ordered SIMP interpolation[J]. Structural and Multidisciplinary Optimization, 2017, 55(2):477-491.
[20] 龙凯, 谷先广, 王选. 基于多相材料的连续体结构动态轻量化设计方法[J]. 航空学报, 2017, 38(10):134-143. LONG K, GU X G, WANG X. Lightweight design method for continuum structure under vibration using multiphase materials[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):134-143(in Chinese).
[21] LI X Q, ZHAO Q H, ZHANG H X, et al. Robust topology optimization of periodic multi-material functionally graded structures under loading uncertainties[J]. CMES-Computer Modeling in Engineering & Sciences, 2021, 127(2), 683-704.
[22] 顾元宪, 刘涛, 亢战, 等. 热结构瞬态响应的耦合灵敏度分析方法与优化设计[J]. 力学学报, 2004, 36(1):37-42. GU Y X, LIU T, KANG Z, et al. Coupling sensitivity analysis and design optimization of thermo-structural transient responses[J]. Acta Mechanica Sinica, 2004, 36(1):37-42(in Chinese).
[23] ZHAO J P, WANG C J. Topology optimization for minimizing the maximum dynamic response in the time domain using aggregation functional method[J]. Computers & Structures, 2017, 190:41-60.
[24] 隋允康, 叶红玲, 刘建信, 等. 追究根基的结构拓扑优化方法[J]. 工程力学, 2008, 25(S2):7-19. SUI Y K, YE H L, LIU J X, et al. A structural topological optimization method based on exploring conceptual root[J]. Engineering Mechanics, 2008, 25(S2):7-19(in Chinese).
[25] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6):765-781.
[26] SVANBERG K. The method of moving asymptotes-A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
文章导航

/