激波干扰是高超声速飞行器气动布局和超燃冲压发动机设计中需重点考虑的局部干扰现象,当该现象发生时会产生复杂的波系结构,对流场行为特征产生影响,进而对飞行器物面载荷及发动机性能产生显著影响。采用数值计算方法针对斜激波入射平板问题,在固定来流马赫数5、单位雷诺数7.12×106 m-1不变的条件下,通过改变上下平板展向宽度研究了6个不同状态下的激波反射类型。结果表明在受限空间内必须考虑侧向溢流对激波反射类型的影响。随平板展向宽度增加,激波反射类型从正则反射逐渐过渡至马赫反射,且马赫杆长度变长并逐渐前移,直至导致内流道堵塞形成脱体激波。采用激波极曲线方法在激波入射角度固定的条件下对两种激波干扰类型的产生机制进行了分析,发现随激波强度增加两束透射激波极曲线上移缩小,进而造成波后流场参数匹配需求,激波反射类型逐渐从正则反射向马赫反射转变,得到了与数值计算结果一致的结论。
Shock wave interference is a local interference phenomenon that needs to be considered in the pneumatic layout of hypersonic vehicle and the design of scramjet. When this phenomenon occurs, complex wave structures will be generated to affect the behavior characteristics of the flow field and then significantly affect the planeload and engine performance. Numerical simulation is used to study the problem of incident shock wave of a plate. Under the condition of constant Mach number 5 and unit Reynolds number 7.12×106 m-1, the types of shock reflection in six different states are studied by changing the transverse width of the upper and lower plates. The results show that the influence of lateral overflow on the reflection types of shock wave must be considered in the restricted space. With the broadening of the transverse width of the plate, the shock reflection type gradually changes from regular reflection to Mach reflection, and the length of Mach stem becomes longer and moves forward gradually until the inner channel is blocked and the detached shock wave is formed. The shock polar theory is also used to analyze the generation mechanism of the two shock interference types under the condition of a fixed shock angle. The analysis shows that with the increase of shock wave intensity, the two transmission shock pole curves move upward and shrink, which leads to the requirement for parameter matching of the flow field behind the wave. The shock reflection type gradually changes from regular reflection to Mach reflection, and the conclusion is consistent with the numerical calculation and wind tunnel test results.
[1] 田正雨, 李桦, 范晓樯. 六类高超声速激波-激波干扰的数值模拟研究[J]. 空气动力学学报, 2004, 22(3): 361-364. TIAN Z Y, LI H, FAN X Q. Numerical investigation for six types of hypersonic turbulent shock-shock interaction[J]. Acta Aerodynamica Sinica, 2004, 22(3): 361-364(in Chinese).
[2] MACH E. Uber den verlauf von funkenwellen in der ebene und im raume[J]. Sitzungsbr Akad Wiss Wien, 1878, 78: 819-838. MACH E. On the course of spark waves in the plane and in space[J]. Sitzungsbr Akad Wiss Wien, 1878, 78: 819-838(in German).
[3] HOLGER B, JOHN K H. 激波边界层干扰[M]. 白菡尘, 译. 北京: 国防工业出版社, 2015: 5-71. HOLGER B, JOHN K H. Shock wave-boundary-layer interactions[M]. BAI H C, translated. Beijing: National Defense Industry Press, 2015: 5-71(in Chinese).
[4] VON NEUMANN J. Oblique reflection of shock[J]. John von Neumann Collected Works, 1943, 6: 238-299.
[5] VON NEUMANN J. Refraction, intersection and reflection of shock waves: NAVORD Report No.203-245[R]. Washington, D.C.: Navy Department, 1945.
[6] BEN-DOR G, IVANOV M, VASILEV E I, et al. Hysteresis processes in the regular reflection?Mach reflection transition in steady flows[J]. Progress in Aerospace Sciences, 2002, 38(4-5): 347-387.
[7] BEN-DOR G. Shock wave reflections in steady flows[M]//Shock Wave Reflection Phenomena. New York: Springer New York, 1992: 175-199.
[8] CHPOUN A, PASSEREL D, LI H, et al. Reconsideration of oblique shock wave reflections in steady flows. Part 1. Experimental investigation[J]. Journal of Fluid Mechanics, 1995, 301: 19-35.
[9] CHPOUN A, PASSEREL D, LENGRAND J C, et al. Mise en evidence experimental et numericale d’unphenomene d’hysteresis lors de la transition reflexion de Mach-reflexion reguliere[J]. Comptes Rendus de l Académie des Sciences-Series IIB-Mechanics, 1994, 319(12): 1447-1453. CHPOUN A, PASSEREL D, LENGRAND J C, et al. Experimental and numerical demonstration of a hysteresis phenomenon during the transition from Mach reflection to regular reflection[J]. Accounts of the Academy of Sciences-Series IIB-Mechanics, 1994, 319(12): 1447-1453(in French).
[10] IVANOV M, ZEITOUN D, VUILLON J, et al. Investigation of the hysteresis phenomena in steady shock reflection using kinetic and continuum methods[J]. Shock Waves, 1996, 5(6): 341-346.
[11] SHIROZU T, NISHIDA M. Numerical studies of oblique shock reflection in steady two dimensional flows[J]. Memoirs of the Faculty of Engineering KYUSHU University, 1995, 55(2): 193-204.
[12] KUDRYAVTSEV A N, KHOTYANOVSKY D V, MARKELOV G N, et al. Numerical simulation of reflection of shock waves generated by finite-width wedge[C]//Proceedings of the 22nd International Symposium Shock Waves, Vol.2.Southampton: University of Southampton, 1999: 1185-1190.
[13] IVANOV M S, BEN-DOR G, ELPERIN T, et al. Flow-Mach-number-variation-induced hysteresis in steady shock wave reflections[J]. AIAA Journal, 2001, 39(5): 972-974.
[14] ONOFRI M, NASUTI F. Theoretical considerations on shock reflections and their implications on the evaluation of air intake performance[J]. Shock Waves, 2001, 11(2): 151-156.
[15] ZHANG E L, LI Z F, LI Y M, et al. Three-dimensional shock interactions and vortices on a V-shaped blunt leading edge[J]. Physics of Fluids, 2019, 31(8): 086102.
[16] 张恩来, 李祝飞, 杨基明. 三维激波反射理论与数值研究[C]//首届全国空气动力学大会论文集. 绵阳: 中国空气动力研究与发展中心, 2018: 1-7. ZHANG E L, LI Z F, YANG J M. Three-dimensional shock reflection theory and numerical research[C]//Proceedings of the First National Aerodynamics Conference. Mianyang: China Aerodynamics Research and Development Center, 2018: 1-7(in Chinese).
[17] 张恩来. 高超声速内外流中的三维激波相互作用[D]. 合肥: 中国科学技术大学, 2019. ZHANG E L. Three-dimensional shock interactions inhypersonic internal/external integration flows[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
[18] 谭廉华. 平面与轴对称定常激波马赫反射中的激波形状研究[D]. 北京: 清华大学, 2007. TAN L H. On the shape of shock waves in steady planar and axisymmetical Mach reflections[D]. Beijing: Tsinghua University, 2007(in Chinese).
[19] TAN L H, REN Y X, WU Z N. Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows[J]. Journal of Fluid Mechanics, 2006, 546: 341-362.
[20] REN Y X, TAN L H, WU Z N. The shape of incident shock wave in steady axisymmetric conical Mach reflection[J]. Advances in Aerodynamics, 2020, 2(1): 474-484.
[21] 傅德薰, 马延文. 计算流体力学[M]. 北京: 高等教育出版社, 2002. FU D X, MA Y W. Computational fluid dynamics[M]. Beijing: Higher Education Press, 2002(in Chinese).
[22] STEGER J L, WARMING R F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J]. Journal of Computational Physics, 1981, 40(2): 263-293.
[23] TORO E F. Riemann solvers and numerical methods for fluid dynamics[M]//The Riemann Problem for the Euler Equations. Berlin: Springer, 1997: 115-157.
[24] 黎作武. 近似黎曼解对高超声速气动热计算的影响研究[J]. 力学学报, 2008, 40(1): 19-25. LI Z W. Study on the dissipative effect of approximate Riemann solver on hypersonic heatflux simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 19-25(in Chinese).
[25] YOON S, JAMESON A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026.