考虑随机冲击影响的自适应Wiener过程剩余寿命预测方法

  • 董青 ,
  • 郑建飞 ,
  • 胡昌华 ,
  • 余铜辉 ,
  • 牟含笑
展开
  • 1. 火箭军工程大学
    2. 解放军第二炮兵工程大学三系302教研室
    3. 中国人民解放军火箭军工程大学
    4. 火箭军驻西安第一军事代表室

收稿日期: 2021-06-07

  修回日期: 2021-08-16

  网络出版日期: 2021-08-17

基金资助

国家自然科学基金;陕西省自然科学基金

Remaining useful life prediction for adaptive Wiener process method with random shock

  • DONG Qing ,
  • ZHENG Jian-Fei ,
  • HU Chang-Hua ,
  • YU Tong-Hui ,
  • MOU Han-Xiao
Expand

Received date: 2021-06-07

  Revised date: 2021-08-16

  Online published: 2021-08-17

摘要

现有针对存在随机冲击影响的退化设备剩余寿命预测方法,不适用于退化设备测量间隔分布不均匀、监测数据的测量频率与历史数据频率不一致的情况,并且未考虑将来退化过程中自适应漂移的可变性。鉴于此,本文基于自适应Wiener过程,提出了一种考虑随机冲击影响的非线性退化设备剩余寿命预测方法。首先,利用正态分布描述随机冲击对设备退化量的影响,建立融合随机冲击影响的自适应Wiener过程退化模型,然后推导出首达时间意义下剩余寿命的解析表达式。通过考虑退化漂移可变性和随机冲击对退化率的影响,构建状态空间模型实现设备剩余寿命在线更新,并应用期望最大化方法实现模型参数估计。最后,通过数值仿真、惯性导航系统陀螺仪和锂电池实例,从不同角度验证了所提方法的有效性和实用性。

本文引用格式

董青 , 郑建飞 , 胡昌华 , 余铜辉 , 牟含笑 . 考虑随机冲击影响的自适应Wiener过程剩余寿命预测方法[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2021.25914

Abstract

The existing remaining useful life (RUL) prediction method with random shock, is not suitable for the situation that uneven measurement intervals and inconsistent measurement frequencies. And this type of method ignores the variability of adaptive drift in the future degradation process. In view of this, based on the adaptive Wiener process, this paper propos-es a RUL prediction method with random shock. Firstly, the normal distribution is used to describe the influence of ran-dom shock on equipment degradation, and it’s establishing an adaptive Wiener process degradation model with random shock. Then, the analytical expression of RUL is derived in the sense of first arrival time. Considering the variability of degradation drift and the influence of random impact on degradation rate, this paper constructs the state space model to realize the online update of equipment RUL. And a model parameter estimation based on expectation maximization algo-rithm is proposed. Finally, Numerical simulation, inertial navigation system gyroscope and lithium battery examples veri-fied the effectiveness and practicability of the proposed method from different angles.

参考文献

[1]陆宁云, 陈闯, 姜斌, 等.复杂系统维护策略最新研究进展:从视情维护到预测性维护[J].自动化学报, 2021, 47(1):1-17 [2]LU N Y, CHEN C, JIANG B, et al.Latest progress on maintenance strategy of complex system: from condition-based main-tenance to predictive maintenance[J].Acta Automatica Sinica, 2021, 47(1):1-17 [3]王泽洲, 陈云翔, 蔡忠义, 等.基于比例关系加速退化建模的设备剩余寿命在线预测[J].系统工程与电子技术, 2021, 43(2):584-592 [4]WANG Z Z, CHEN Y X, CAI Z Y, et al.Equipment remaining useful lifetime online prediction based on ac-celerated degradation modeling with the proportion rela-tionship[J].Systems Engineering and Electronics, 2021, 43(2):584-592 [5]HU J W, SUN Q Z, YE Z S, et al.Joint modeling of degradation and lifetime data for RUL prediction of dete-riorating products[J]. [J].IEEE Transactions on Industrial Informatics, .2020, 17(7):4521-4531 [6]王玺, 胡昌华, 任子强, 等.基于非线性过程的航空发动机性能衰减建模与剩余寿命预测[J].航空学报, 2020, 41(02):195-205 [7]WANG X, HU C H, REN Z Q, et al.Performance deg-radation modeling remaining useful life prediction for aero-engine based on nonlinear Wiener process[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(02):195-205 [8]袁烨, 张永, 丁汉.工业人工智能的关键技术及其在预测性维护中的应用现状[J].自动化学报, 2020, 46(10):2013-2030 [9]YUAN Y, ZHANG Y, DING H.Research on key tech-nology of industrial artificial intelligence and its applica-tion in predictive maintenance[J].Acta Automatica Sinica, 2020, 46(10):2013-2030 [10]Pecht M.Prognostics and Health Management of Elec-tronics [M]. John Wiley, New Jersey, 2008. [11]柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战[J].自动化学报, 2009, 35(6):641-649 [12]CHAI T Y.Challenges of Optimal Control for Plant-wide Production Processes in Terms of Control and Op-timization Theories[J].Acta Automatica Sinica, 2009, 35(6):641-649 [13]Si X S, Wang W, Hu C H, Zhou D H.Remaining useful life estimation-a review on the statistical data driven ap-proaches[J].European Journal of Operational Research, 2011, 213(1):1-14 [14]张延静, 马义忠, 欧阳林寒.基于竞争失效的单部件系统可靠性建模与维修[J].系统工程与电子技术, 2017, 39(11):2623-2630 [15]ZHANG Y J, MA Y Z, OUYANG L H, WANG J, LIU L J.Reliability modeling and maintenance strategy for a single-unit system based on competing failure process-es[J].Systems Engineering and Electronics, 2017, 39(11):2623-2630 [16]孙富强, 李艳宏, 程圆圆.考虑冲击韧性的退化-冲击相依竞争失效建模[J].北京航空航天大学学报, 2020, 46(12):2195-2202 [17]SUN F Q, LI Y H, CHENG Y Y.Competing failure modeling for degradation-shock dependence systems with shock toughness[J].Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12):2195-2202 [18]王浩伟, 奚文骏, 冯玉光.基于退化失效与突发失效竞争的导弹剩余寿命预测[J].航空学报, 2016, 37(4):1240-1248 [19]WANG H W, XI W Y, FENG Y G.Remaining life pre-diction based on competing risks of degradation failure and traumatic failure for missiles[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1240-1248 [20]王华伟, 高军, 吴海桥.基于竞争失效的航空发动机剩余寿命预测[J].机械工程学报, 2014, 50(6):197-205 [21]WANG H W, GAO J, WU H Q.Residual remaining life prediction based on competing failures for aircraft en-gines[J].Journal of Mechanical Engineering, 2014, 50(6):197-205 [22]白灿, 胡昌华, 司小胜, 等.随机冲击影响的非线性退化设备剩余寿命预测[J].系统工程与电子技术, 2018, 40(12):2729-2735 [23]BAI C, HU C H, SI X S, et al.Remaining useful life prediction method for degradation equipment with ran-dom shocks[J].Systems Engineering and Electronics, 2018, 40(12):2729-2735 [24]Si X S, Wang W, Hu C H, et al.Remaining useful life estimation-a review on the statistical data driven ap-proaches[J].European Journal of Operational Research, 2011, 213(1):1-14 [25]Zhai Q Q, Ye Z S.RUL prediction of deteriorating prod-ucts using an adaptive Wiener process model[J].IEEE Transactions on Industrial Informatics, 2017, 13(6):2911-2921 [26]NAKAGAWA T.Shock and damage models in reliabil-ity theory[M]. Berlin: Springer, 2007. [27]Si X S, Wang W, Chen M Y.A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J].European Journal of Operational Research, 2013, 226(1):53-66 [28]Zhang Z X, Si X S, Hu C H, et al.An adaptive prognos-tic approach incorporating inspection influence for dete-riorating systems[J].IEEE Transactions on Reliability, 2018, 68(1):302-316 [29]Li X, Ding Q, Sun J Q.Remaining useful life estimation in prognostics using deep convolution neural net-works[J].Reliability Engineering & System Safety, 2018, 172(4):1-11 [30]YAN T, LEI Y, LI N, et al.Degradation modeling and remaining useful life prediction for dependent competing failure processes[J].,[J].Reliability Engineering & System Safety, 2021, 212(8):- [31]Ellefsen A L, Bjorlykhaug E, Esoy V, et al.Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J].Reliability Engineering & System Safety, 2019, 183(5):240-251
文章导航

/