多相流与反应流的机理、模型及其调控技术专栏

高超声速飞行器界面多相催化数值研究进展

  • 杨肖峰 ,
  • 李芹 ,
  • 杜雁霞 ,
  • 刘磊 ,
  • 桂业伟
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 上海交通大学 机械与动力工程学院, 上海 200240

收稿日期: 2021-06-03

  修回日期: 2021-06-28

  网络出版日期: 2021-08-17

基金资助

国家重点研发计划(2019YFA0405202);国家自然科学基金(12072361,92052301)

Progress in numerical research on interface heterogeneous catalysis of hypersonic vehicles

  • YANG Xiaofeng ,
  • LI Qin ,
  • DU Yanxia ,
  • LIU Lei ,
  • GUI Yewei
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-06-03

  Revised date: 2021-06-28

  Online published: 2021-08-17

Supported by

National Key R&D Program of China (2019YFA0405202); National Natural Science Foundation of China (12072361, 92052301)

摘要

随着未来临近空间高超声速飞行器高速度、长航时新需求的提出,飞行器高温流动与热防护系统相互作用凸显,引发极端力学、热学条件下气固界面多相催化等高温界面效应。回顾了高超声速飞行器中界面多相催化理论建模和数值研究历程,重点综述了界面多相催化的给定速率系数模型、含微细观特征的唯象模型、基于微观理论模拟的跨尺度模型的研究进展。总结了作者团队在飞行器界面多相催化效应建模、机理和应用相关方面的研究结果。结合未来飞行器减重、增程、保形的设计需求,进一步提出了国内后续研究的重点方向,以期支撑热防护系统轻量化、低冗余设计。

本文引用格式

杨肖峰 , 李芹 , 杜雁霞 , 刘磊 , 桂业伟 . 高超声速飞行器界面多相催化数值研究进展[J]. 航空学报, 2021 , 42(12) : 625908 -625908 . DOI: 10.7527/S1000-6893.2021.25908

Abstract

With the new demand for high speed and long endurance of future near-space hypersonic vehicle, the interaction between high-temperature flow and thermal protection system of near-space hypersonic vehicles is prominent under extreme mechanical and thermal conditions, causing such high-temperature interface effects as heterogeneous catalysis at the gas-solid interface. The theoretical modeling and numerical research history of interface heterogeneous catalysis in hypersonic vehicles are recalled. For interface heterogeneous catalysis modeling, the specific rate efficiency model, the phenomenological model with micro- or meso-scale properties, and the cross-scale model based on microscopic theoretical simulation are reviewed in details. The research progress of modeling, mechanism and application related with the interface heterogeneous catalysis effect in the authors' team are summarized. Focusing on the future hypersonic vehicle design requirements for weight reduction, range extension, and conformal shape, the key directions of follow-up research are further proposed to support the lightweight and low-redundancy design of thermal protection systems.

参考文献

[1] 孟光, 周徐斌, 苗军. 航天重大工程中的力学问题[J]. 力学进展, 2016, 46:201606. MENG G, ZHOU X B, MIAO J. Mechanical problems in momentous projects of aerospace engineering[J]. Advances in Mechanics, 2016, 46:201606(in Chinese).
[2] JULIANO T J, ADAMCZAK D, KIMMEL R L. HIFiRe-5 flight test results[J]. Journal of Spacecraft and Rockets, 2015, 52(3):650-663.
[3] CHEN F J, BERRY S A. HyBoLT flight experiment:NASA/TM-2010-216725[R]. Washington, D.C.:NASA, 2010.
[4] BERTIN J J, CUMMINGS R M. Fifty years of hypersonics:Where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6-7):511-536.
[5] SHANG J J S, YAN H. High-enthalpy hypersonic flows[J]. Advances in Aerodynamics, 2020, 2:22.
[6] 叶友达, 张涵信, 蒋勤学, 等. 近空间高超声速飞行器气动特性研究的若干关键问题[J]. 力学学报, 2018, 50(6):1292-1310. YE Y D, ZHANG H X, JIANG Q X, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6):1292-1310(in Chinese).
[7] BHAT B N. Aerospace materials and applications[M]. Reston:AIAA, 2018.
[8] RIVERS H K, GLASS D E. Advances in hot structure development[C]//Proceedings of the 5th European Workshop on Thermal Protection Systems and Hot Structures, 2006.
[9] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51:379-402.
[10] 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2):287-302. MENG S H, JIN H, WANG G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302(in Chinese).
[11] HERDRICH G, FERTIG M. Catalysis of metallic and ceramic TPS-materials[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 2009, 7(ists26):49-58.
[12] HERDRICH G, FERTIG M, LÖHLE S, et al. Oxidation behavior of siliconcarbide-based materials by using new probe techniques[J]. Journal of Spacecraft and Rockets, 2005, 42(5):817-824.
[13] RIED R, GOODRICH W, LI C, et al. Space shuttle orbiter entry heating and TPS response:STS-1 predictions and flight data:19820015618[R]. Washington, D.C.:NASA, 1982.
[14] VAßEN R, CERNUSCHI F, RIZZI G, et al. Recent activities in the field of thermal barrier coatings including burner rig testing in the European union[J]. Advanced Engineering Materials, 2008, 10(10):907-921.
[15] CHAZOT O. Experimental studies on hypersonic stagnation point chemical environment[R]. Belgium:von Karman Institute for Fluid Dynamics, 2006.
[16] KARL S, SCHRAMM J M, HANNEMANN K. High enthalpy cylinder flow in HEG:A basis for CFD validation:AIAA-2003-4252[R]. Reston:AIAA, 2003.
[17] SCHRAMM J M, HANNEMANN K, BECK W, et al. Cylinder shock layer density profiles measured in high enthalpy flows in HEG:AIAA-2002-2913[R]. Reston:AIAA, 2002.
[18] MACLEAN M, WADHAMS T, HOLDEN M, et al. Investigation of blunt bodies with CO2 test gas including catalytic effects:AIAA-2005-4693[R]. Reston:AIAA, 2005.
[19] MACLEAN M, HOLDEN M. Catalytic effects on heat transfer measurements for aerothermal studies with CO2:AIAA-2006-0182[R]. Reston:AIAA, 2006.
[20] AMARATUNGA S R, TUTTY O R, ROBERTS G T. High-speed flow with discontinuous surface catalysis[J]. Journal of Fluid Mechanics, 2000, 420:325-359.
[21] WRIGHT M, EDQUIST K, TANG C, et al. A review of aerothermal modeling for Mars entry missions:AIAA-2010-0443[R]. Reston:AIAA, 2010.
[22] BERTIN J J, CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38(1):129-157.
[23] 国义军, 曾磊, 张昊元, 等. HTV2第二次飞行试验气动热环境及失效模式分析[J]. 空气动力学学报, 2017, 35(4):496-503. GUO Y J, ZENG L, ZHANG H Y, et al. Investigation on aerothermodynamic environment and ablation which lead to HTV-2 second fight test failing[J]. Acta Aerodynamica Sinica, 2017, 35(4):496-503(in Chinese).
[24] SCHMISSEUR J D. Hypersonics into the 21 st century:A perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences, 2015, 72:3-16.
[25] LIU X, FURRER D, KOSTERS J, et al. Vision 2040:A roadmap for integrated, multiscale modeling and simulation of materials and systems:CR-2018-219771[R]. Washington, D.C.:NASA, 2018.
[26] FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aerospace Sciences, 1958, 25(2):73-85.
[27] SCALA S M. Hypersonic heat transfer to catalytic surfaces[J]. Journal of the Aerospace Sciences, 1958, 25(4):273-275.
[28] BARBATO M, BRUNO C. Heterogeneous catalysis:Theory, models and applications[M]//Molecular Physics and Hypersonic Flows. Dordrecht:Springer, 1996:139-160.
[29] SARMA G S R. Physico-chemical modelling in hypersonic flow simulation[J]. Progress in Aerospace Sciences, 2000, 36(3-4):281-349.
[30] DUFFA G, VIGNOLES G L, GOYHÉNōCHE J M, et al. Ablation of carbon-based materials:Investigation of roughness set-up from heterogeneous reactions[J]. International Journal of Heat and Mass Transfer, 2005, 48(16):3387-3401.
[31] GE W, CHANG Q, LI C X, et al. Multiscale structures in particle-fluid systems:Characterization, modeling, and simulation[J]. Chemical Engineering Science, 2019, 198:198-223.
[32] TONG Z X, HE Y L, TAO W Q. A review of current progress in multiscale simulations for fluid flow and heat transfer problems:The frameworks, coupling techniques and future perspectives[J]. International Journal of Heat and Mass Transfer, 2019, 137:1263-1289.
[33] MARSCHALL J, MACLEAN M, NORMAN P E, et al. Surface chemistry in non-equilibrium flows[M]//Hypersonic Nonequilibrium Flows:Fundamentals and Recent Advances. Reston:AIAA, 2015:239-327.
[34] BOWKER M. Heterogeneous catalysis:Fundamentals and applications[J]. Catalysis Letters, 2012, 142:1411.
[35] 杨肖峰, 李芹, 杜雁霞, 等. 高焓气流下表面跨尺度催化传热过程的CFD/RMD耦合计算方法探究[C]//中国工程热物理学会2020年传热传质学术会议,2020. YANG X F, LI Q, DU Y X, et al. Investigation of CFD/RMD coupling computational method for surface cross-scale catalytic heat transfer in high-enthalpy flow[C]//2020 Academic Conference on Heat and Mass Transfer of Chinese Society of Engineering Thermophysics,2020(in Chinese).
[36] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston:AIAA, 2006.
[37] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[38] CHEN Y K, HENLINE W D, STEWART D A, et al. Navier-Stokes solutions with surface catalysis for Martian atmospheric entry[J]. Journal of Spacecraft and Rockets, 1993, 30(1):32-42.
[39] STEWART D. Surface catalysis and characterization of proposed candidate TPS for access-to-space vehicles:NASA-TM-112206[R]. Washington, D.C.:NASA, 1997.
[40] 丁明松, 董维中, 高铁锁, 等. 局部催化特性差异对气动热环境影响的计算分析[J]. 航空学报, 2018, 39(3):121588. DING M S, DONG W Z, GAO T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121588(in Chinese).
[41] 刘丽萍, 王国林, 王一光, 等. 高焓化学非平衡流条件下C/SiC复合材料的催化性能[J]. 航空学报, 2018, 39(5):421696. LIU L P, WANG G L, WANG Y G, et al. Catalytic performance of C/SiC composites in high enthalpy chemical non-equilibrium flow[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):421696(in Chinese).
[42] 苗文博, 程晓丽, 艾邦成, 等. 高超声速流动壁面催化复合气动加热特性[J]. 宇航学报, 2013, 34(3):442-446. MIAO W B, CHENG X L, AI B C, et al. Surface catalysis recombination aero-heating characteristics of hypersonic flow[J]. Journal of Astronautics, 2013, 34(3):442-446(in Chinese).
[43] 杨肖峰, 唐伟, 桂业伟, 等. 火星环境高超声速催化加热特性[J]. 宇航学报, 2017, 38(2):205-211. YANG X F, TANG W, GUI Y W, et al. Hypersonic catalytic aeroheating characteristics for Mars entry process[J]. Journal of Astronautics, 2017, 38(2):205-211(in Chinese).
[44] RAKICH J, STEWART D, LANFRANCO M. Results of a flight experiment on the catalytic efficiency of the Space Shuttle heat shield:AIAA-1982-0944[R]. Reston:AIAA, 1982.
[45] MILLER J, TANNEHILL J, EDWARDS T, et al. Computation of hypersonic flows with finite-catalytic walls:AIAA-1994-2354[R]. Reston:AIAA, 1994.
[46] KOVALEV V L, KOLESNIKOV A F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry (a review)[J]. Fluid Dynamics, 2005, 40(5):669-693.
[47] SCOTT C. Catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation:AIAA-1980-1477[R]. Reston:AIAA, 1980.
[48] SHINN J, MOSS J, SIMMONDS A. Viscous-shock-layer heating analysis for the shuttle windward-symmetry plane with surface finite catalytic recombination rates:AIAA-1982-0842[R]. Reston:AIAA, 1982.
[49] GUPTA R N, MOSS J N, SIMMONDS A L, et al. Space Shuttle heating analysis with variation in angle of attack and catalycity[J]. Journal of Spacecraft and Rockets, 1984, 21(2):217-219.
[50] ZOBY E, SIMMONDS A, GUPTA R. Temperature-dependent reaction-rate expression for oxygen recombination at Shuttle entry conditions:AIAA-1984-0224[R]. Reston:AIAA, 1984.
[51] PAGNON D, AMORIM J, NAHORNY J, et al. On the use of actinometry to measure the dissociation in O2 DC glow discharges:Determination of the wall recombination probability[J]. Journal of Physics D:Applied Physics, 1995, 28(9):1856-1868.
[52] BALAT-PICHELIN M, BADIE J M, BERJOAN R, et al. Recombination coefficient of atomic oxygen on ceramic materials under earth re-entry conditions by optical emission spectroscopy[J]. Chemical Physics, 2003, 291(2):181-194.
[53] PEJAKOVI AC'G D A, MARSCHALL J, DUAN L, et al. Nitric oxide production from surface recombination of oxygen and nitrogen atoms[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(2):178-186.
[54] BRUNO C. Modelling catalytic recombination heating at hypersonic speeds:AIAA-1989-0309[R]. Reston:AIAA, 1989.
[55] NASUTI F, BARBATO M, BRUNO C. Material-dependent catalytic recombination modeling for hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(1):131-136.
[56] BARBATO M, REGGIANI S, BRUNO C, et al. Model for heterogeneous catalysis on metal surfaces with applications to hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(3):412-420.
[57] KOVALEV V L, KOLESNIKOV A F, KRUPNOV A A, et al. Analysis of phenomenological models describing the catalytic properties of high-temperature reusable coatings[J]. Fluid Dynamics, 1996, 31(6):910-919.
[58] CHOQUET I. A new approach to model and simulate numerically surface chemistry in rarefied flows[J]. Physics of Fluids, 1999, 11(6):1650-1661.
[59] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory:AIAA-2000-2366[R]. Reston:AIAA, 2000.
[60] YANO R, SUZUKI K. Kinetic description of finite-wall catalysis for monatomic molecular recombination[J]. Physics of Fluids, 2011, 23(11):117101.
[61] BELLAS-CHATZIGEORGIS G, BARBANTE P F, MAGIN T E. Energy accommodation coefficient calculation methodology using state-to-state catalysis applied to hypersonic flows[J]. AIAA Journal, 2019, 58(1):278-290.
[62] ALTMAN I. On energy accommodation coefficient of gas molecules on metal surface at high temperatures[J]. Surface Science, 2020, 698:121609.
[63] CARLETON K L, MARINELLI W J. Spacecraft thermal energy accommodation from atomic recombination[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(4):650-655.
[64] GIMELSHEIN S F, WYSONG I J. Gas-phase recombination effect on surface heating in nonequilibrium hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(3):638-646.
[65] SEWARD W A, JUMPER E J. Model for oxygen recombination on silicon-dioxide surfaces[J]. Journal of Thermophysics and Heat Transfer, 1991, 5(3):284-291.
[66] JUMPER E J, SEWARD W A. Model for oxygen recombination on reaction-cured glass[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(3):460-465.
[67] JUMPER E, NEWMAN M, KITCHEN D, et al. Recombination of nitrogen on silica-based, thermal-protection-tile-like surfaces:AIAA-1993-0477[R]. Reston:AIAA, 1993.
[68] BARBATO M, GIORDANO D, MUYLAERT J, et al. Comparison of catalytic wall conditions for hypersonic flow[J]. Journal of Spacecraft and Rockets, 1996, 33(5):620-627.
[69] GORDIETS B, FERREIRA C M, NAHORNY J, et al. Surface kinetics of N and O atoms in discharges[J]. Journal of Physics D:Applied Physics, 1996, 29(4):1021-1031.
[70] GORDIETS B F, FERREIRA C M. Self-consistent modeling of volume and surface processes in air plasma[J]. AIAA Journal, 1998, 36(9):1643-1651.
[71] ARMENISE I, CAPITELLI M, GORSE C, et al. Nonequilibrium vibrational kinetics of an O2/O mixture hitting a catalytic surface[J]. Journal of Spacecraft and Rockets, 2000, 37(3):318-323.
[72] ARMENISE I, CAPITELLI M, GORSE C. Nonequilibrium vibrational kinetics of air hitting a catalytic SiO2 surface[J]. Journal of Spacecraft and Rockets, 2001, 38(4):482-487.
[73] ARMENISE I, BARBATO M, CAPITELLI M, et al. Surface recombination coefficients and boundary-layer hypersonic-flow calculations on different surfaces[J]. Journal of Spacecraft and Rockets, 2004, 41(2):310-313.
[74] ARMENISE I, BARBATO M, CAPITELLI M, et al. State-to-state catalytic models, kinetics, and transport in hypersonic boundary layers[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(3):465-476.
[75] GUERRA V. Theoretical investigation of the influence of the wall temperature on the probability for surface atomic recombination of a single species[J]. Japanese Journal of Applied Physics, 2006, 45(10B):8200-8203.
[76] GUERRA V. Analytical model of heterogeneous atomic recombination on silicalike surfaces[J]. IEEE Transactions on Plasma Science, 2007, 35(5):1397-1412.
[77] 李芹. 飞行器表面多相催化效应的唯象建模与气动热数值模拟研究[D]. 上海:上海交通大学, 2021. LI Q. Phenomenological modeling of heterogeneous catalysis and numerical simulation of aerodynamic heating on aircraft surface[D]. Shanghai:Shanghai Jiao Tong University, 2021(in Chinese).
[78] 李芹, 杨肖峰, 董威, 等. 高超声速飞行器表面吸附特性对多相催化过程影响的数值模拟[J]. 上海交通大学学报, 2021, 55(5):52-61. LI Q, YANG X F, DONG W, et al. Numerical simulation on influence of adsorption on surface catalysis process of hypersonic vehicle[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5):52-61(in Chinese).
[79] 李芹, 杨肖峰, 杜雁霞, 等. 基于材料催化属性的高超声速飞行器表面多相催化建模[C]//第十九届全国高超声速飞行器气动力/热学术交流会, 2020. LI Q, YANG X F, DU Y X, et al. Modeling of surface heterogeneous catalysis of hypersonic vehicle based on material catalytic properties[C]//The 19th National Symposium on Aerodynamics/Aerothermodynamics of Hypersonic Vehicles, 2020(in Chinese).
[80] VIGNOLES G, LACHAUD J, ASPA Y. Roughness evolution in ablation of carbon-based materials:Multi-scale modelling and material analysis[C]//Proceedings of the Thermal Protection Systems and Hot Structures, 2006.
[81] RAOUFI D, KIASATPOUR A, FALLAH H R, et al. Surface characterization and microstructure of ITO thin films at different annealing temperatures[J]. Applied Surface Science, 2007, 253(23):9085-9090.
[82] PARK C. Numerical implementation of surface catalysis, reaction, and sublimation:RTO-EN-AVT-142[R]. Neuilly sur Seine:NATO Research and Technology Organization, 2007.
[83] KANDASAMY R, ABD W, KHAMIS A. Effects of chemical reaction, heat and mass transfer on boundary layer flow over a porous wedge with heat radiation in the presence of suction or injection[J]. Theoretical and Applied Mechanics, 2006, 33(2):123-148.
[84] THOEMEL J, CHAZOT O. Surface catalysis of rough surfaces:AIAA-2009-3931[R]. Reston:AIAA, 2009.
[85] MULLENIX N, POVITSKY A. Hypersonic ablation of graphite thermal protection systems with surface defects[J]. Journal of Spacecraft and Rockets, 2016, 53(5):912-929.
[86] HERDRICH G, FERTIG M, PETKOW D, et al. Experimental and numerical techniques to assess catalysis[J]. Progress in Aerospace Sciences, 2012, 48-49:27-41.
[87] KEIL F J. Multiscale modelling in computational heterogeneous catalysis[M]//Multiscale Molecular Methods in Applied Chemistry. Berlin, Heidelberg:Springer, 2012:69-107.
[88] SALCICCIOLI M, STAMATAKIS M, CARATZOULAS S, et al. A review of multiscale modeling of metal-catalyzed reactions:Mechanism development for complexity and emergent behavior[J]. Chemical Engineering Science, 2011, 66(19):4319-4355.
[89] CACCIATORE M, RUTIGLIANO M, BILLING G. Energy flows, recombination coefficients and dynamics for oxygen recombination on silica surfaces:AIAA-1998-2843[R]. Reston:AIAA, 1998.
[90] RUTIGLIANO M, PIERETTI A, CACCIATORE M, et al. N atoms recombination on a silica surface:A global theoretical approach[J]. Surface Science, 2006, 600(18):4239-4246.
[91] CACCIATORE M, RUTIGLIANO M. Molecular dynamics studies on fundamental molecular surface processes[J]. AIP Conference Proceedings, 2011, 1333:433-440.
[92] NORMAN P, SCHWARTZENTRUBER T, COZMUTA I. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows:AIAA-2011-3644[R]. Reston:AIAA, 2011.
[93] NORMAN P, SCHWARTZENTRUBER T. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows:Part II:AIAA-2012-3097[R]. Reston:AIAA, 2012.
[94] NORMAN P, SCHWARTZENTRUBER T, COZMUTA I. Modeling air-SiO2 surface catalysis under hypersonic conditions with ReaxFF molecular dynamics:AIAA-2010-4320[R]. Reston:AIAA, 2010.
[95] LI K, LIU J, LIU W Q. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2015, 28(5):1355-1361.
[96] BUCHACHENKO A A, KOVALEV V L, KRUPNOV A A. Closed model of oxygen recombination on an Al2O3 surface[J]. Russian Journal of Physical Chemistry B, 2013, 7(1):88-95.
[97] BEDRA L, RUTIGLIANO M, BALAT-PICHELIN M, et al. Atomic oxygen recombination on quartz at high temperature:Experiments and molecular dynamics simulation[J]. Langmuir, 2006, 22(17):7208-7216.
[98] GUERRA V, LOUREIRO J. Dynamical Monte Carlo simulation of surface atomic recombination[J]. Plasma Sources Science and Technology, 2004, 13(1):85-94.
[99] THOEMEL J, LUKKIEN J, CHAZOT O. A multiscale approach for building a mechanism based catalysis model for high enthalpy carbon dioxide flow:AIAA-2007-4399[R]. Reston:AIAA, 2007.
[100] SHIOZAKI S, SAKIYAMA Y, TAKAGI S, et al. Multiscale analysis of heterogeneous catalysis on a silica surface:AIAA-2008-1250[R]. Reston:AIAA, 2008.
[101] BRUIX A, MARGRAF J T, ANDERSEN M, et al. First-principles-based multiscale modelling of heterogeneous catalysis[J]. Nature Catalysis, 2019, 2(8):659-670.
[102] MARINOV D, TEIXEIRA C, GUERRA V. Deterministic and Monte Carlo methods for simulation of plasma-surface interactions[J]. Plasma Processes and Polymers, 2017, 14(1-2):1600175.
[103] 李芹, 杨肖峰, 杜雁霞, 等. 离解氧原子在硅基防热材料表面催化复合过程的KMC模拟[C]//中国工程热物理学会2021年传热传质学术会议, 2021. LI Q, YANG X F, DU Y X, et al. KMC simulation of recombination of dissociated oxygen atoms on silica based thermal protection materials[C]//2021 Academic Conference on Heat and Mass Transfer of Chinese Society of Engineering Thermophysics, 2021(in Chinese).
[104] RUTIGLIANO M, ZAZZA C, SANNA N, et al. Oxygen adsorption on β-cristobalite polymorph:Ab initio modeling and semiclassical time-dependent dynamics[J]. The Journal of Physical Chemistry A, 2009, 113(52):15366-15375.
[105] ZAZZA C, RUTIGLIANO M, SANNA N, et al. Oxygen adsorption on β-quartz model surfaces:Some insights from density functional theory calculations and semiclassical time-dependent dynamics[J]. The Journal of Physical Chemistry A, 2012, 116(9):1975-1983.
[106] BUCHACHENKO A A, KROUPNOV A A, KOVALEV V L. First-principle study of atomic oxygen and nitrogen adsorption on (111) β-cristobalite as a model of thermal protection coverage[J]. Acta Astronautica, 2014, 100:40-46.
[107] MEANA-PA AN~U EDA R, PAUKKU Y, DUANMU K N, et al. Atomic oxygen recombination at surface defects on reconstructed (0001) α-quartz exposed to atomic and molecular oxygen[J]. The Journal of Physical Chemistry C, 2015, 119(17):9287-9301.
[108] DEUSHI F, ISHIKAWA A, NAKAI H. Density functional theory analysis of elementary reactions in NOx reduction on Rh surfaces and Rh clusters[J]. The Journal of Physical Chemistry C, 2017, 121(28):15272-81. 
[109] ARASA C, GAMALLO P, SAYÓS R. Adsorption of atomic oxygen and nitrogen at beta-cristobalite (100):A density functional theory study[J]. The Journal of Physical Chemistry B, 2005, 109(31):14954-14964.
[110] KULKARNI A D, TRUHLAR D G, GOVERAPET SRINIVASAN S, et al. Oxygen interactions with silica surfaces:Coupled cluster and density functional investigation and the development of a new ReaxFF potential[J]. The Journal of Physical Chemistry C, 2013, 117(1):258-269.
[111] KARSTEN R. Ab initio thermodynamics and first-principles microkinetics for surface catalysis[J]. Catalysis Letters, 2016, 146(3):541-63.
[112] MACLEAN M, MARSCHALL J, DRIVER D. Finite-rate surface chemistry model, II:Coupling to viscous navier-stokes code:AIAA-2011-3784[R]. Reston:AIAA, 2011.
[113] MARSCHALL J, MACLEAN M. Finite-rate surface chemistry model, I:Formulation and reaction system examples:AIAA-2011-3783[R]. Reston:AIAA, 2011.
[114] CHOI H S, KIM K H, HONG K H, et al. Multi-scale modeling of processing of carbon nanotubes[C]//Proceedings of the NSTI Nanotechnology Conference, 2005.
[115] MILOS F S, RASKY D J. Review of numerical procedures for computational surface thermochemistry[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1):24-34.
[116] CHEN Y K, HENLINE W D, TAUBER M E. Mars pathfinder trajectory based heating and ablation calculations[J]. Journal of Spacecraft and Rockets, 1995, 32(2):225-230.
[117] MILOS F S, CHEN Y K, CONGDON W M, et al. Mars pathfinder entry temperature data, aerothermal heating, and heatshield material response[J]. Journal of Spacecraft and Rockets, 1999, 36(3):380-391.
[118] JOSHI H, AGARWAL A, PURANIK B, et al. A hybrid FVM-LBM method for single and multi-fluid compressible flow problems[J]. International Journal for Numerical Methods in Fluids, 2010, 62(4):403-427.
[119] SUN X W, YANG H B, MI T. Heat transfer and ablation prediction of carbon/carbon composites in a hypersonic environment using fluid-thermal-ablation multiphysical coupling[J]. International Journal of Aerospace Engineering, 2020, 2020:9232684.
[120] LIU L, DAI G Y, ZENG L, et al. Experimental model design and preliminary numerical verification of fluid-thermal-structural coupling problem[J]. AIAA Journal, 2019, 57(4):1715-1724.
[121] MARTIN A, BOYD I D. Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation[J]. Journal of Spacecraft and Rockets, 2015, 52(1):89-104.
[122] TABIEI A, SOCKALINGAM S. Multiphysics coupled fluid/thermal/structural simulation for hypersonic reentry vehicles[J]. Journal of Aerospace Engineering, 2012, 25(2):273-281.
[123] YANG X F, GUI Y W, TANG W, et al. Surface chemical effects on hypersonic nonequilibrium aeroheating in dissociated carbon-oxygen mixture[J]. Journal of Spacecraft and Rockets, 2018, 55(3):687-697.
[124] YANG X F, DU Y X, LIU S S, et al. Coupled heat transfer characteristics on gas-solid reacting interface in carbon-oxygen dissociating environment for spacecraft entry flow[J]. Journal of Thermal Science and Technology, 2020, 15(2):JTST0020.
[125] YANG X F, GUI Y W, TANG W, et al. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow[J]. Acta Astronautica, 2018, 147:445-453.
[126] 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学:物理学力学天文学, 2019, 49(11):114702. GUI Y W. Combined thermal phenomena of hypersonic vehicle[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11):114702(in Chinese).
[127] 桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4):641-650. GUI Y W, LIU L, WEI D. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2020, 38(4):641-650(in Chinese).
[128] 桂业伟, 唐伟, 杜雁霞. 临近空间高超声速飞行器热安全[M]. 北京:国防工业出版社, 2019. GUI Y W, TANG W, DU Y X. Thermal safety issues of near-space hypersonic vehicles[M]. Beijing:National Defense Industry Press, 2019(in Chinese).
[129] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):20844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):20844(in Chinese).
[130] THORNTON E A, DECHAUMPHAI P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11):1052-1059.
[131] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4):201-209.
[132] 杨肖峰. 火星进入器高超声速气动加热与耦合热效应研究[D]. 绵阳:中国空气动力研究与发展中心, 2017. YANG X F. Hypersonic aerodynamic heating characteristics and coupling thermal effects for Mars entry vehicles[D]. Mianyang:China Aerodynamics Research and Development Center, 2017(in Chinese).
[133] 杨肖峰, 唐伟, 桂业伟, 等. 探路者号火星探测器气动热和传热耦合分析[J]. 工程热物理学报, 2014, 35(12):2461-2465. YANG X F, TANG W, GUI Y W, et al. Coupled computation of aeroheating and heat transfer for Mars pathfinder entry vehicle[J]. Journal of Engineering Thermophysics, 2014, 35(12):2461-2465(in Chinese).
[134] YANG X F, LIU L, DAI G Y, et al. Trajectory-based fluid-thermal-structural coupled analysis for Mars entry capsule:AIAA-2017-2168[R]. Reston:AIAA, 2017.
[135] YANG X F, TANG W, GUI Y W, et al. Integrated analysis of hypersonic aerothermodynamics and thermal response for Mars entry vehicles along the trajectory[C]//Proceedings of the 68th International Astronautical Congress, 2017.
[136] 杨肖峰, 桂业伟, 刘磊, 等. 表面催化特性对火星进入气固耦合热效应的影响研究[J]. 中国科学:技术科学, 2018, 48(9):939-949. YANG X F, GUI Y W, LIU L, et al. Influence of surface catalysis on coupled aerodynamic heating for Mars entries[J]. Scientia Sinica (Technologica), 2018, 48(9):939-949(in Chinese).
[137] YANG X F, GUI Y W, TANG W, et al. Thermochemical behavior and heat transfer in hypersonic thermal boundary layer with high-enthalpy dissociated carbon-oxygen gas mixture[C]//Proceedings of the 16th International Heat Transfer Conference, 2018.
[138] 杨肖峰, 桂业伟, 唐伟, 等. 高温碳氧环境近壁热化学行为及催化特性模拟[J]. 工程热物理学报, 2018, 39(10):2244-2250. YANG X F, GUI Y W, TANG W, et al. Numerical simulation of catalysis characteristics and near-wall thermochemical behavior in high-temperature carbon-oxygen gas mixture[J]. Journal of Engineering Thermophysics, 2018, 39(10):2244-2250(in Chinese).
[139] YANG X F, GUI Y W, XIAO G M, et al. Reacting gas-surface interaction and heat transfer characteristics for high-enthalpy and hypersonic dissociated carbon dioxide flow[J]. International Journal of Heat and Mass Transfer, 2020, 146:118869.
[140] 杨肖峰, 桂业伟, 李伟斌, 等. 高温碳氧环境壁面碳基材料烧蚀特性数值模拟和参数化分析[C]//中国工程热物理学会2018年传热传质学术会议, 2018. YANG X F, GUI Y W, LI W B, et al. Numerical simulation and parametrical analysis of ablation characteristics on carbon based materials in high-temperature carbon-oxygen environment[C]//2018 Academic Conference on Heat and Mass Transfer of Chinese Society of Engineering Thermophysics, 2018(in Chinese).
[141] BOSE D, WRIGHT M J, PALMER G E. Uncertainty analysis of laminar aeroheating predictions for Mars entries[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(4):652-662.
[142] 杨肖峰, 桂业伟, 邱波, 等. 高焓CO2气流壁面两步催化机制对非平衡气动加热影响的数值模拟[J]. 国防科技大学学报, 2020, 42(1):108-116. YANG X F, GUI Y W, QIU B, et al. Numerical investigation on influence of surface two-step catalytic mechanism on non-equilibrium aerodynamic heating for high-enthalpy CO2 flow[J]. Journal of National University of Defense Technology, 2020, 42(1):108-116(in Chinese).
[143] HANQUIST K M, BOYD I D. Plasma assisted cooling of hot surfaces on hypersonic vehicles[J]. Frontiers in Physics, 2019, 7:9.
[144] LI Q, YANG X F, DU Y X, et al. The influence of metal material properties on heat and mass transfer into thermal protection surface with phenomenological catalytic model[C]//The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow, 2021.
[145] YANG X F, LI Q, XIAO G, et al. Coupling flow and heat transfer physics of catalysis-involved gas/material interaction for thermal protection coatings of high-speed spacecraft[C]//The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow, 2021.
[146] 唐伟, 杨肖峰, 桂业伟, 等. 火星进入器高超声速气动力/热研究综述[J]. 宇航学报, 2017, 38(3):230-239. TANG W, YANG X F, GUI Y W, et al. Review of hypersonic aerodynamics and aerothermodynamics for Mars entries[J]. Journal of Astronautics, 2017, 38(3):230-239(in Chinese).
[147] 杨肖峰, 唐伟, 张昊元, 等. 火星进入器高超声速化学非平衡特性数值计算研究[J]. 载人航天, 2016, 22(6):694-699. YANG X F, TANG W, ZHANG H Y, et al. Numerical calculation of hypersonic chemical non-equilibrium characteristics for Mars entry capsule[J]. Manned Spaceflight, 2016, 22(6):694-699(in Chinese).
[148] YANG X F, TANG W, GUI Y W, et al. Hypersonic static aerodynamics for Mars science laboratory entry capsule[J]. Acta Astronautica, 2014, 103:168-175.
[149] 杨肖峰, 唐伟, 桂业伟. MSL火星探测器高超声速流场预测及气动性分析[J]. 宇航学报, 2015, 36(4):383-389. YANG X F, TANG W, GUI Y W. Hypersonic flow field prediction and aerodynamics analysis for MSL entry capsule[J]. Journal of Astronautics, 2015, 36(4):383-389(in Chinese).
[150] 杨肖峰, 国义军, 唐伟, 等. 进入火星大气的高温真实气体效应与气动加热研究[J]. 宇航学报, 2018, 39(9):960-968. YANG X F, GUO Y J, TANG W, et al. High-temperature real-gas effects and aerodynamic heating for capsules entering Martian atmosphere[J]. Journal of Astronautics, 2018, 39(9):960-968(in Chinese).
[151] 杨肖峰, 肖光明, 桂业伟, 等. 考虑非平衡效应的对流换热特性耦合模拟及热壁修正新思路[J]. 化工学报, 2020, 71(S2):152-160. YANG X F, XIAO G M, GUI Y W, et al. Coupling simulation of convective heat transfer characteristics and new idea for hot-wall correction considering non-equilibrium effects[J]. CIESC Journal, 2020, 71(S2):152-160(in Chinese).
[152] YANG X F, XIAO G M, LIU L, et al. Wall temperature correlation for convective heating prediction of aircraft heat shield in high-enthalpy and chemically reacting flow[J]. Journal of Physics:Conference Series, 2021, 1786(1):012028.
文章导航

/