For structural systems involving inputs with distribution parameter uncertainty, the uncertainty in distribution parameters will lead to the uncertainty of failure probability. Consequently, the contributions of the input variables to failure probability are also uncertain. In this case, the three-loop nested Monte Carlo(MC) sampling strategy is considered a natural method to evaluate the influence of input variables on the structural failure., However, the computational cost of the MC method is normally too prohibitive to be accepted for the engineering problem. Therefore, a newly efficient algorithm is proposed in this paper for global reliability sensitivity analysis of the inputs with parameter uncertainty. The proposed method can reduce the three-loop nested MC into a single-loop one by introducing a ‘surrogate sampling probability density function (SS-PDF)’ and incorporating the single-loop MC theory into the computation, which greatly decreases the computational cost. For the problem with small failure probability, the importance sampling procedure (IS) and truncated importance sampling procedure (TIS) are combined with the single-loop sampling method to further improve the calculation efficiency. The efficiency and precision of the proposed methods are verified by several numerical and engineering examples.
[1]HELTON J C, JOHNSON J D, SALLABERRY C J, et al.Survey of sampling-based methods for uncertainty and sensitivity analysis[J].Reliability Engineering & System Safety, 2006, 91(10):1175-1209
[2]BJERAGER P, KRENK S.Parametric Sensitivity in First Order Reliability Theory[J].Journal of Engineering Mechanics, 1989, 115(7):1577-1582
[3]LI J C, Lu Z Z, ZHAO X P.Moment-independent importance measure of basic random variable and its probability density evolution solution[J].Science China Technological Sciences, 2010, 53(4):1138-1145
[4]吕震宙, 宋述芳, 李洪双等.结构机构可靠性及可靠性灵敏度分析[M]. 北京: 科学出版社, 2009: 100-170.
[5]吕震宙,李璐祎,宋述芳等.不确定性结构系统的重要性分析理论与求解方法[M]. 科学出版社, 2015: 9-26.
[6]SCHAIBLY J H.Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficientsII Applications[J].The Journal of Chemical Physics, 1973, 59(8):3879-3879
[7]HELTON J C, DAVIS F J.Sampling-based methods[J].In: Saltelli A, Chan K, Scott E M, editors, 2000, :101-153
[8]HELTON J C, DAVIS F J.Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems[J].Reliability Engineering & System Safety, 2003, 81(1):23-69
[9]SOBOL' I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J].Mathematics & Computers in Simulation, 2001, 55:271-280
[10]SOBOL' I M, KUCHERENKO S.Derivative based global sensitivity measures and their link with global sensitivity indices[J].Mathematics & Computers in Simulation, 2016, 79(10):3009-3017
[11]SALTELLI A, MARIVOET J.Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques[J].Reliability Engineering & System Safety, 1990, 28(2):229-253
[12]SALTELLI A.Sensitivity Analysis for Importance Assessment[J].Risk Analysis, 2010, 22(3):579-590
[13]SALTELLI A.Making best use of model evaluations to compute sensitivity indices[J].Computer Physics Communications, 2002, 145(2):280-297
[14]LI G, HU J, WANG S W, et al.Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions[J].Journal of Physical Chemistry A, 2006, 110(7):2474-85
[15]RATTO M, PAGANO A, YOUNG P.State Dependent Parameter metamodelling and sensitivity analysis[J].Computer Physics Communications, 2007, 177(11):863-876
[16]TARANTOLA S, D GATELLI, MARA T A.Random balance designs for the estimation of first order global sensitivity indices[J].Reliability Engineering and System Safety, 2006, 91(6):717-727
[17]SHEPHERD B.Global Sensitivity Analysis. The Primer by SALTELLI A, RATTO M, ANDRES T, CAMPOLONGO F, CARIBONI J, GATELLI D, SAISANA M, and TARANTOLA S[J].Biometrics, 2009, 65:1311-1312
[18]BORGONOVO E.A new uncertainty importance measure[J].Reliability Engineering and System Safety, 2007, 92(6):771-784
[19]BORGONOVO E, CASTAINGS W, TARANTOLA S.Moment Independent Importance Measures: New Re-sults and Analytical Test Cases[J].Risk Analysis, 2011, 31(3):404-428
[20]LI L Y, LU Z Z, CHEN C.Moment-independent importance measure of correlated input variable and its state dependent parameter solution[J].Aerospace Science & Technology, 2016, 48:281-290
[21]WEI P F, LU Z Z, HAO W R, et al.Efficient sampling methods for global reliability sensitivity analysis[J].Computer Physics Communications, 2012, 183(8):1728-1743
[22]YUN W Y, LU Z Z, JIANG X, et al.An efficient method for estimating global sensitivity indices[J].International Journal for Numerical Methods in Engineering, 2016, 106:1275-1289
[23]YUN W Y, LU Z Z, JIANG X.An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy[J].Reliability Engineering & System Safety, 2018, 187(JUL.):174-182
[24]SHI Y, LU Z Z, CHENG K, et al.Temporal and spatial multi-parameter dynamic reliability and global reliability sensitivity analysis based on the extreme value moments[J].Structural and Multidiplinary Optimization, 2017, 56(1):117-129
[25]YUN W Y, LU Z Z, WEI P F, et al.An efficient method for estimating the parameter global reliability sensitivity analysis by innovative single-loop process and embedded Kriging model[J].Mechanical Systems and Signal Processing, 2019, 133:106-288
[26]LING C Y, LU Z Z, CHENG K, et al.An efficient method for estimating global reliability sensitivity in-dices[J].Probabilistic Engineering Mechanics, 2019, 56(APR.):35-49
[27]DITLEVSEN O, MADSEN H O, (1996).Structural reliability methods[J].1996, 47(1)-960.
[28]HALDAR A, MAHADEVAN S.Probability,Reliability and Statistical Methods in Engineering Design[J]., 2000, 77(5):379-379
[29]HAJAGOS J G.Interval Monte Carlo as an Alternative to Second-Order Sampling for Estimating Ecological Risk[J].Reliable Computing, 2007, 13(1):71-81
[30]LI L.Y,LU Z ZA new algorithm for importance analysis of the inputs with distribution parameter uncertain-ty[J].International Journal of Systems Science, 2015, 47(13):3065-3077
[31]吕震宙,宋述芳,李璐祎等.结构/机构可靠性设计基础[M]. 西安: 西北工业大学出版社, 2019: 67-106.
[32]DU X P, CHEN W.A Most Probable Point-Based Method for Efficient Uncertainty Analysis[J].Journal of Design & Manufacturing Automation, 2001, 4(1):47-66