附加连接对主动指向超静平台控制效果的影响
收稿日期: 2021-05-25
修回日期: 2021-07-06
录用日期: 2021-08-10
网络出版日期: 2021-08-17
基金资助
省部级项目
Ultra-agile ultra-stable and ultra-pointing platform with additional connection
Received date: 2021-05-25
Revised date: 2021-07-06
Accepted date: 2021-08-10
Online published: 2021-08-17
Supported by
Provincial or Ministerial Level Project
超精超稳超敏捷卫星在航天器星体平台的基础上引入二级控制主动指向超静平台(ASP)实现了载荷的振动隔离与敏捷机动。载荷与卫星平台之间的附加连接可能导致系统指向精度与隔振效果的下降。为此,利用仿真与试验分析研究了线缆、热管等附加连接对主动指向超静平台控制性能的影响。首先,利用牛顿-欧拉方法建立了超精超稳超敏捷卫星多级动力学模型,将线缆、热管连接等效为附加刚度,建立附加连接的力学模型,为分析附加连接对系统产生的影响提供动力学基础。其次,仿真分析了附加连接对系统隔振效果、稳定性的影响,为实际卫星的设计与测试提供理论支持。为进一步掌握附加连接的刚度特性和对系统控制性能产生的影响,设计对主动指向超静平台开展控制系统的全物理仿真试验。试验结果表明,采用试验中线缆、热管的装配布局对主动指向超静平台控制的稳定性、指向精度与稳定时间均无明显影响,试验中线缆、热管的装配布局对整星的安装设计有重要参考意义。最后,提出了一种自适应预设性能非线性控制器,解决了附加刚度存在下平台与载荷之间的耦合与振动抑制问题,数值仿真结果显示,提出的自适应预设性能控制改善了载荷与平台之间的动力学耦合问题,进一步提升了载荷的敏捷机动、稳定跟踪与高精度指向能力。
樊茂 , 汤亮 , 关新 , 张科备 . 附加连接对主动指向超静平台控制效果的影响[J]. 航空学报, 2023 , 44(11) : 225864 -225864 . DOI: 10.7527/S1000-6893.2021.25864
Ultrahigh precision ultrahigh stability ultra-agile multi-stage satellites are implemented by introducing a two-stage control ultra-Agile ultra-Stable and ultra-Pointing platform (ASP) to the spacecraft platform. The ASP isolates the vibration and enables rapid maneuver ability of payloads. Additional connection may degrade the pointing accuracy and capability of vibration isolation; therefore, numerical simulation and an experiment examining the control performance of the ASP system with cable and heat pipe additional connection are conducted. The Newton-Euler method is used to establish a multi-stage dynamic system. A mechanical model laying the foundation for effect analysis of the cable and heat pipe additional connection on the system is established. Numerical simulation is implemented to analyze the effect of additional connection on vibration isolation and stability of the system, providing theoretical support for satellite design and test. To gain more precise understanding of the effect of the additional connection, a full physical experiment is designed and conducted on the ASP control system. The result shows that the assembly layout of the cable and heat pipe additional connection has little effect on stability, pointing accuracy and setting time of the ASP control system. The assembly layout of the cable and heat pipe in the experiment provides a significant reference value and practical meaning for satellite design. An adaptive nonlinear control law with prescribed performance is proposed for dynamic coupling between the payload and platform. The simulation result shows that the controller considerably reduces the dynamic coupling and further improves the ability of fast maneuver, stable tracking and high precision pointing.
1 | 张军, 谌勇, 骆剑, 等. 整星隔振技术的研究现状和发展[J]. 航空学报, 2005, 26(2): 179-183. |
ZHANG J, CHEN Y, LUO J, et al. Review of the whole-spacecraft isolation techniques[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(2): 179-183 (in Chinese). | |
2 | NEAT G W, MELODY J W, LURIE B J. Vibration attenuation approach for spaceborne optical interferometers[J]. IEEE Transactions on Control Systems Technology, 1998, 6(6): 689-700. |
3 | SABELHAUS P A, DECKER J E. An overview of the James Webb Space Telescope (JWST) project[C]∥ SPIE Proceedings, Optical, Infrared, and Millimeter Space Telescopes. SPIE, 2004. |
4 | HYDE T T, HA K Q, JOHNSTON J D, et al. Integrated modeling activities for the James Webb Space Telescope: Optical jitter analysis[C]∥ SPIE Proceedings", "Optical, Infrared, and Millimeter Space Telescopes. SPIE, 2004. |
5 | FANSON J, FRERKING M, DUREN R. Kepler mission development challenges and early results[C]∥ 2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 1-8. |
6 | TRAUGER J, STAPELFELDT K, TRAUB W, et al. ACCESS: A concept study for the direct imaging and spectroscopy of exoplanetary systems[C]∥ SPIE Astronomical Telescopes+Instrumentation. Proc SPIE 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave, 2010. |
7 | JOSHI A, KIM W J. System identification and multivariable control design for a satellite UltraQuiet isolation technology experiment (SUITE)[J]. European Journal of Control, 2004, 10(2): 174-186. |
8 | DEWELL L, PEDREIRO N, BLAUROCK C, et al. Precision telescope pointing and spacecraft vibration isolation for the Terrestrial Planet Finder Coronagraph[C]∥ Optics and Photonics 2005. Proc SPIE 5899, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II. 2005. |
9 | SACKS L W, BLAUROCK C, DEWELL L D, et al. Preliminary jitter stability results for the large UV/optical/infrared (LUVOIR) surveyor concept using a non-contact vibration isolation and precision pointing system[C]∥ SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10698, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave. 2018. |
10 | DENOYER K K, ERWIN R S, NINNEMAN R R. Advanced smart structures flight experiments for precision spacecraft[J]. Acta Astronautica, 2000, 47(2-9): 389-397. |
11 | WU Y, YU K P, JIAO J, et al. Dynamic modeling and robust nonlinear control of a six-DOF active micro-vibration isolation manipulator with parameter uncertainties[J]. Mechanism and Machine Theory, 2015, 92: 407-435. |
12 | ZHANG Y, ZHANG J R. The imaging stability enhancement of optical payload using multiple vibration isolation platforms[J]. Journal of Vibration and Control, 2015, 21(9): 1848-1865. |
13 | XU Y F, LIAO H, LIU L, et al. Modeling and robust H-infinite control of a novel non-contact ultra-quiet Stewart spacecraft[J]. Acta Astronautica, 2015, 107: 274-289. |
14 | BECERRA-VARGAS M, MORGADO BELO E. Dynamic modeling of a six degree-of-freedom flight simulator motion base[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(5): 051020. |
15 | DAVLIAKOS I, PAPADOPOULOS E. A model-based impedance control of a 6-dof electrohydraulic Stewart platform[C]∥ 2007 European Control Conference (ECC). Piscataway: IEEE Press, 2015. |
16 | CHI W C, CAO D Q, WANG D W, et al. Design and experimental study of a VCM-based Stewart parallel mechanism used for active vibration isolation[J]. Energies, 2015, 8(8): 8001-8019. |
17 | BRONOWICKI A J. A layered vibration control strategy for space telescopes[C]∥ Smart Structures and Materials. Proc SPIE 5056, Smart Structures and Materials 2003: Smart Structures and Integrated Systems. 2003. |
18 | LI M, ZHANG Y, WANG Y Y, et al. The pointing and vibration isolation integrated control method for optical payload[J]. Journal of Sound and Vibration, 2019, 438: 441-456. |
19 | ZHANG Y, LI M, SONG Z Y, et al. Design and analysis of a moment control unit for agile satellite with high attitude stability requirement[J]. Acta Astronautica, 2016, 122: 90-105. |
20 | 王有懿, 汤亮, 何英姿. 超静平台动力学建模与解耦控制[J]. 空间控制技术与应用, 2016, 42(4): 6-11. |
WANG Y Y, TANG L, HE Y Z. Dynamic modeling and decoupled control of ultra quiet platform[J]. Aerospace Control and Application, 2016, 42(4): 6-11 (in Chinese). | |
21 | QIN C, XU Z B, XIA M Y, et al. Design and optimization of the micro-vibration isolation system for large space telescope[J]. Journal of Sound and Vibration, 2020, 482: 115461. |
22 | TANG L, ZHANG K B, GUAN X, et al. Dynamic modeling and multi-stage integrated control method of ultra-quiet spacecraft[J]. Advances in Space Research, 2020, 65(1): 271-284. |
23 | TANG L, GUO Z X. Integrated control and magnetic suspension for fast attitude maneuvering and stabilization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3273-3283. |
24 | 郝仁剑, 汤亮, 关新. 基于观测器的超静卫星平台关节-任务空间鲁棒控制方法[J]. 空间控制技术与应用, 2019, 45(3): 8-16. |
HAO R J, TANG L, GUAN X. Observer-based robust controlfor the hexapod platform on the ultra-quiet spacecraft in the joint-task space[J]. Aerospace Control and Application, 2019, 45(3): 8-16 (in Chinese). | |
25 | YANG H J, LIU L, LIU Y, et al. Modeling and micro-vibration control of flexible cable for disturbance-free payload spacecraft[J].Microgravity Science and Technology, 2021, 33(4): 1-16. |
26 | 张科备, 王大轶, 王有懿. 一种超静卫星动力学建模及控制方法[J]. 航天控制, 2017, 35(5): 37-44, 57. |
ZHANG K B, WANG D Y, WANG Y Y. Dynamics modeling and control for ultra-quiet satellite[J]. Aerospace Control, 2017, 35(5): 37-44, 57 (in Chinese). | |
27 | BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099. |
28 | 张超. 基于预设性能方法的挠性航天器姿态控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 22-25. |
ZHANG C. Research on attitude control of flexible spacecraft based on preset performance method[D]. Harbin: Harbin Institute of Technology, 2019: 22-25 (in Chinese) | |
29 | ZEINALI M, NOTASH L. Adaptive sliding mode control with uncertainty estimator for robot manipulators[J]. Mechanism and Machine Theory, 2010, 45(1): 80-90. |
/
〈 |
|
〉 |