综述

能量沉积减阻技术机理及相关问题研究进展

  • 韩路阳 ,
  • 王斌 ,
  • 蒲亮 ,
  • 陈青 ,
  • 郑海滨
展开
  • 32272 部队 51分队,兰州 210016

收稿日期: 2021-06-29

  修回日期: 2021-07-14

  网络出版日期: 2021-08-10

Research progress on mechanism and related problems of energy deposition drag reduction technology

  • HAN Luyang ,
  • WANG Bin ,
  • PU Liang ,
  • CHEN Qing ,
  • ZHENG Haibin
Expand
  • 32272 Unit of Chinese People's Liberation Army, Lanzhou 210016, China

Received date: 2021-06-29

  Revised date: 2021-07-14

  Online published: 2021-08-10

摘要

能量沉积(ED)减阻是一种节能高效的主动流动控制技术,由于响应速度快、能量利用率高、可靠性强、部件稳定、可远程操控等优点,在超声速特别是高超声速飞行器减阻领域具有广阔的应用前景。本文对飞行器能量沉积减阻的技术机理及理论研究现状进行了综述,展示了减阻过程中透镜效应、涡环、空气锥等经典的流场作用现象,探讨了能量沉积减阻的过程和流场结构作用机理,分析了影响能量沉积减阻效应的关键因素。通过总结能量沉积发生装置的发展现状,阐明了能量沉积减阻投入实践应用的可能性,并对未来我国能量沉积减阻研究和利用能量沉积原理进行其他类型的流动控制进行了展望。

本文引用格式

韩路阳 , 王斌 , 蒲亮 , 陈青 , 郑海滨 . 能量沉积减阻技术机理及相关问题研究进展[J]. 航空学报, 2022 , 43(9) : 26032 -026032 . DOI: 10.7527/S1000-6893.2021.26032

Abstract

Drag reduction by Energy Deposition (ED) as an energy-saving and efficient flow control technology exhibits outstanding performance in the field of supersonic vehicles, and in particular, hypersonic vehicles. With advantages such as quick response, high energy utilization, strong reliability, stable parts, and remote manipulation, energy deposition has a broad application prospect. This paper focuses on the mechanism of and current theoretical research on energy deposition, presenting the classical flow field phenomena such as the lensing effect, the vortex ring, and the air cone. The process of drag reduction by energy deposition and the mechanism of the flow field structure are discussed, and the key factors affecting the drag reduction effect by energy deposition are analyzed. By summarizing the development status of energy deposition generators, this paper expounds the possibility of practical application of energy deposition drag reduction, and prospects the future research on energy deposition drag reduction and other types of flow control using the energy deposition principle in China.

参考文献

[1] MYRABO L. Solar-powered global aerospace transportation[C]//13th International Electric Propulsion Conference. Reston: AIAA, 1978.
[2] MYRABO L, RAIZER Y. Laser-induced air spike for advanced transatmospheric vehicles[C]//25th Plasmadynamics and Lasers Conference. Reston: AIAA, 1994.
[3] BRACKEN R, MYRABO L, NAGAMATSU H, et al. Experimental investigation of an electric arc air-spike in Mach 10 flow with preliminary drag measurements[C]//32nd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2001.
[4] MINUCCI M A S, TORO P G P, OLIVEIRA A C, et al. Laser-supported directed-energy "air spike" in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2005, 42(1): 51-57.
[5] SALVADOR I I, MINUCCI M A S, TORO P G P, et al. Surface heat flux and pressure distribution on a hypersonic blunt body with DEAS[C]//AIP Conference Proceedings, 2008, 997(1): 367-378.
[6] KIM J H, MATSUDA A, SASOH A. Interactions among baroclinically-generated vortex rings in building up an acting spike to a bow shock layer[J]. Physics of Fluids, 2011, 23(2): 021703.
[7] WU Y, LI Y, ZHANG P, et al. Experimental investigation on atmosphere plasma actuation based flow separation suppression[C]//The 2nd China Aeronautical Science and Technology Youth Science Forum. Beijing: Chinese Society of Aeronautics and Astronautics, 2006: 200-204 (in Chinese). 吴云, 李应红, 张朴, 等. 大气压等离子体激励抑制分离流动的试验研究[C]//第二届中国航空学会青年科技论坛文集. 北京: 中国航空学会, 2006: 200-204.
[8] ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.
[9] NIE W S, CHENG Y F, CHE X K. A review on dielectric barrier discharge plasma flow control[J]. Advances in Mechanics, 2012, 42(6): 722-734 (in Chinese). 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6): 722-734.
[10] KNIGHT D. Survey of aerodynamic drag reduction at high speed by energy deposition[J]. Journal of Propulsion and Power, 2008, 24(6): 1153-1167.
[11] ZHELTOVODOV A, PIMONOV E, KNIGHT D. Energy deposition influence on supersonic flow over axisymmetric bodies[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
[12] HONG Y J, WANG D K, LI Q, et al. Interaction of single-pulse laser energy with bow shock in hypersonic flow[J]. Chinese Journal of Aeronautics, 2014, 27(2): 241-247.
[13] ERDEM E, YANG L C, KONTIS K. Drag reduction studies by steady energy deposition at Mach 5[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
[14] MA N N, CUI C Y, WANG D K, et al. Study on the effects of single pulse energy deposition position on pressure evolution of the Type IV shock interaction[C]//2nd International Conference on Aerospace Engineering and Information Technology, 2012: 511-516 (in Chinese). 马楠楠, 崔村燕, 王殿恺, 等. 单脉冲能量沉积位置对Ⅳ型激波干扰压力场演化过程的影响研究[C]//第二届航空航天工程与信息技术国际会议, 2012: 511-516.
[15] KANDALA R, CANDLER G V. Numerical studies of laser-induced energy deposition for supersonic flow control[J]. AIAA Journal, 2004, 42(11): 2266-2275.
[16] RAǐZER Y P. Breakdown and heating of gases under the influence of a laser beam[J]. Soviet Physics Uspekhi, 1966, 8(5): 650-673.
[17] LAUX C, YU L, PACKAN D, et al. Ionization mechanisms in two-temperature air plasmas[C]//30th Plasmadynamic and Lasers Conference. Reston: AIAA, 1999.
[18] ADELGREN R, ELLIOT G, KNIGHT D, et al. Energy deposition in supersonic flows[C]//39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
[19] ALBERTI A, MUNAFÒ A, KOLL M, et al. Laser-induced non-equilibrium plasma kernel dynamics[J]. Journal of Physics D: Applied Physics, 2020, 53(2): 025201.
[20] ALBERTI A, MUNAFÒ A, PANTANO C, et al. Self-consistent computational fluid dynamics of supersonic drag reduction via upstream-focused laser-energy deposition[J]. AIAA Journal, 2020, 59(4): 1214-1224.
[21] DORS I, PARIGGER C, LEWIS J. Fluid dynamics effects following laser-induced optical breakdown[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
[22] CHEN Y LA. Laser-induced gas breakdown and ignition[D]. Tennessee: The University of Tennessee, 1998: 53-59.
[23] FU N, XU D G, ZHANG G Z, et al. Exploring femtosecond laser plasma to reduce drag of hypersonic vehicle[J]. Chinese Journal of Lasers, 2015, 42(2): 0202003 (in Chinese). 付宁, 徐德刚, 张贵忠, 等. 飞秒激光等离子体在高超声速飞行器减阻中的应用[J]. 中国激光, 2015, 42(2): 0202003.
[24] BLETZINGER P, GANGULY B N, VAN WIE D, et al. Plasmas in high speed aerodynamics[J]. Journal of Physics D: Applied Physics, 2005, 38(4): R33-R57.
[25] ADELGREN R G, YAN H, ELLIOTT G S, et al. Control of edney IV interaction by pulsed laser energy deposition[J]. AIAA Journal, 2005, 43(2): 256-269.
[26] SAKAI T, SEKIYA Y, MORI K, et al. Interaction between laser-induced plasma and shock wave over a blunt body in a supersonic flow[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(5): 605-617.
[27] GEORGIEVSKⅡ P Y, LEVIN V A. Unsteady interaction of a sphere with atmospheric temperature inhomogeneity at supersonic speed[J]. Fluid Dynamics, 1993, 28(4): 568-574.
[28] OGINO Y, OHNISHI N, TAGUCHI S, et al. Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition[J]. Physics of Fluids, 2009, 21(6): 066102.
[29] BILLIG F S. Shock-wave shapes around spherical-and cylindrical-nosed bodies[J]. Journal of Spacecraft and Rockets, 1967, 4(6): 822-823.
[30] REYNOLDS W C, PAREKH D E, JUVET P J D, et al. Bifurcating and blooming jets[J]. Annual Review of Fluid Mechanics, 2003, 35: 295-315.
[31] ANDERSON K, KNIGHT D D. Interaction of heated filaments with a blunt cylinder in supersonic flow[J]. Shock Waves, 2011, 21(2): 149-161.
[32] WANG D K, SHI J L, QING Z X. Numerical study of shock wave drag reduction mechanism by nanosecond-pulse laser energy deposition[J]. Infrared and Laser Engineering, 2021, 50(3): 3788/IRLA20200253 (in Chinese). 王殿恺, 石继林, 卿泽旭. 纳秒脉冲激光能量沉积激波减阻机理数值研究[J]. 红外与激光工程, 2021, 50(3): 3788/IRLA20200253.
[33] HE G. Investigation on the three-dimensional swept impinging oblique shock/turbulent boundary layer interactions[D]. Changsha: National University of Defense Technology, 2018: 1-3 (in Chinese). 何刚. 三维后掠激波/湍流边界层干扰研究[D]. 长沙: 国防科技大学, 2018: 1-3.
[34] WANG D K, HONG Y J, REN Y X, et al. Flow control method of type IV interaction with high rated laser energy[J]. Journal of Propulsion Technology, 2015, 36(10): 1459-1464 (in Chinese). 王殿恺, 洪延姬, 任玉新, 等. 高重频激光控制IV型激波干扰方法研究[J]. 推进技术, 2015, 36(10): 1459-1464.
[35] YAN H, GAITONDE D. Effect of energy pulse on edney IV interaction[C]//3rd AIAA Flow Control Conference. Reston: AIAA, 2006.
[36] ZHAN P G. Innovative research on drag and heat reduction concept of blunt body abroad[J]. Aerodynamic Missile Journal, 2015(3): 14-17 (in Chinese). 战培国. 国外钝头体减阻降热概念创新研究[J]. 飞航导弹, 2015(3): 14-17.
[37] RIGGINS D, TAYLOR T, KHAMOOSHI A. Innovative concepts for large-scale drag and heat transfer reductions in high-speed flows[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
[38] SHNEYDER M, MACHERET S, ZAIDI S, et al. Steady and unsteady supersonic flow control with energy addition[C]//34th AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2003.
[39] WANG J X, HONG Y J, LI Q, et al. Research of the influence of repetitive-rate of laser energy reducing wave drag for hypersonic craft[J]. Science Technology and Engineering, 2013, 13(23): 6956-6959 (in Chinese). 王金霞, 洪延姬, 李倩, 等. 激光重复频率对减小高超声速飞行器波阻的影响研究[J]. 科学技术与工程, 2013, 13(23): 6956-6959.
[40] WANG D K, QING Z X, LI Q, et al. Selection method of key parameters for wave drag reduction by high frequency laser energy[J]. Journal of Propulsion Technology, 2017, 38(5): 1188-1193 (in Chinese). 王殿恺, 卿泽旭, 李倩, 等. 高重频激光减阻的关键因素选择方法研究[J]. 推进技术, 2017, 38(5): 1188-1193.
[41] SKVORTSOV V, KUNETSOV Y. Consequences of heat concept of electrical discharge influence on aerodynamic characteristics for comparative experiments in aerodynamics[C]//32nd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2001.
[42] RIGGINS D, NELSON H, JOHNSON E. Blunt body wave drag reduction using focused energy deposition[C]//8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1998.
[43] FANG J, HONG Y J, LI Q, et al. Numerical analysis of supersonic drag reduction with repetitive laser energy deposition[J]. High Power Laser and Particle Beams, 2011, 23(5): 1158-1162 (in Chinese). 方娟, 洪延姬, 李倩, 等. 高重复频率激光能量沉积减小超声速波阻的数值研究[J]. 强激光与粒子束, 2011, 23(5): 1158-1162.
[44] ERDEM E, KONTIS K, YANG L. Steady energy deposition at Mach 5 for drag reduction[J]. Shock Waves, 2013, 23(4): 285-298.
[45] HONG Y J, LI Q, FANG J, et al. Advances in study of laser plasma drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 93-101 (in Chinese). 洪延姬, 李倩, 方娟, 等. 激光等离子体减阻技术研究进展[J]. 航空学报, 2010, 31(1): 93-101.
[46] WEN M, WANG D K, WANG W D. Influence of key parameters on the interaction of the laser induced plasma hot core and shock wave[J]. Infrared and Laser Engineering, 2019, 48(4): 95-101 (in Chinese). 文明, 王殿恺, 王伟东. 关键参数对激光等离子体热核与激波相互作用过程的影响规律[J]. 红外与激光工程, 2019, 48(4): 95-101.
[47] KOLESNICHENKO Y, BROVKIN V, AZAROVA O, et al. Microwave energy release regimes for drag reduction in supersonic flows[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
[48] KOLESNICHENKO Y, BROVKIN V, LASHKOV V, et al. MW energy deposition for aerodynamic application[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
[49] GEORGIEVSKY P Y, LEVIN V. Bow shock waves structures dynamics for pulse-periodic energy input into a supersonic flow[C]//The 5th International Workshop on Magneto-and Plasma Aerodynamics for Aerospace Applications, 2003: 228-233.
[50] KIM J H, MATSUDA A, SAKAI T, et al. Drag reduction with high-frequency repetitive side-on laser pulse energy depositions[C]//40th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2010.
[51] KIM J H, MATSUDA A, SAKAI T, et al. Wave drag reduction with acting spike induced by laser-pulse energy depositions[J]. AIAA Journal, 2011, 49(9): 2076-2078.
[52] SAKAI T. Supersonic drag performance of truncated cones with repetitive energy depositions[J]. International Journal of Aerospace Innovations, 2009, 1(1): 31-43.
[53] TRETYAKOV P, GARANIN A, KRAYNEV V, et al. Investigation of local laser energy release influence on supersonic flow by methods of aerophysical experiments[C]//Proceedings of the 8th International Conference on Methods in Aerophysical Research. Novosibirsk: Russian Academy of Sciences, Siberian Division, 1996: 200-204.
[54] WANG D Q, XU C H, JIANG C W, et al. Research progress of hypersonic flow control technology[J]. Aerodynamic Missile Journal, 2015(9): 24-30 (in Chinese). 王得强, 许晨豪, 蒋崇文, 等. 高超声速流动控制技术研究进展[J]. 飞航导弹, 2015(9): 24-30.
[55] LU J X. Study on compact nanosecond laser[D]. Shenzhen: Shenzhen University, 2018: 41-42 (in Chinese). 卢建新. 小型纳秒激光器的研制[D]. 深圳: 深圳大学, 2018: 41-42.
[56] MALKA V, FAURE J, GAUDUEL Y A, et al. Principles and applications of compact laser-plasma accelerators[J]. Nature Physics, 2008, 4(6): 447-453.
[57] TIAN H B, WANG L. Analysis of output characteristics of Nd: YVO4 and Nd: YAG all-solid-state laser[J]. Laser & Optronics Progress, 2005, 42(3): 15-18 (in Chinese). 田宏宾, 王丽. Nd: YVO4和Nd: YAG全固态激光器输出特性的比较分析[J]. 激光与光电子学进展, 2005, 42(3): 15-18.
[58] PHAM H S, SHODA T, TAMBA T, et al. Impacts of laser energy deposition on flow instability over double-cone model[J]. AIAA Journal, 2017, 55(9): 2992-3000.
[59] GU Y P. New development trend of electronic countermeas-ures equipment abroad[J]. Electronics World, 2001(8): 4-6 (in Chinese). 顾耀平. 国外电子对抗装备发展新动向[J]. 电子世界, 2001(8): 4-6.
[60] XUAN Y, WANG W H, CHENG D S, et al. Research status and development trend of airborne high power microwave weapons[J]. Winged Missiles Journal, 2008(6): 32-34 (in Chinese). 宣源, 汪卫华, 程德胜, 等. 机载高功率微波武器研究现状与发展趋势[J]. 飞航导弹, 2008(6): 32-34.
[61] MARSH J, MYRABO L, MESSITT D, et al. Experimental investigation of the hypersonic 'air spike' inlet at Mach 10[C]//34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996.
[62] TORO P, MYRABO L, NAGAMATSU H. Pressure investigation of the hypersonic 'Directed-Energy Air Spike' inlet at Mach number 10 with arc power up to 70 kW[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998.
[63] BRACKEN R, MYRABO L, NAGAMATSU H, et al. Experimental investigation of an electric arc air-spike with and without blunt body in hypersonic flow[C]//39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
[64] BRACKEN R, MYRABO L, NAGAMATSU H, et al. Experimental investigation of an electric arc air-spike in Mach 10 flow with preliminary drag measurements[C]//32nd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2001.
[65] ZHOU Y. Performance characteristics of sparkjet and its application on shock wave control[D]. Changsha: National University of Defense Technology, 2014: 2-7 (in Chinese). 周岩. 火花放电合成射流工作性能及其在激波控制中的应用研究[D]. 长沙: 国防科学技术大学, 2014: 2-7.
[66] BAI X Y. Numerical and experimental investigations on energy and charges deposition in a needle-like electron-beam plasma[D]. Hefei: University of Science and Technology of China, 2017: 5-10 (in Chinese). 白小燕. 针状电子束等离子体能量与电荷沉积问题的模拟和实验研究[D]. 合肥: 中国科学技术大学, 2017: 5-10.
[67] ZHU B L. The generation and modulation of plasmas by electron beam[D]. Hefei: University of Science and Technology of China, 2021: 7-12 (in Chinese). 朱波龙. 电子束产生和调控等离子体的实验研究[D]. 合肥: 中国科学技术大学, 2021: 7-12.
[68] JIANG Z L. Progresses on experimental techniques of hypersonic and high-enthalpy wind tunnels[J]. Acta Aerodynamica Sinica, 2019, 37(3): 347-355 (in Chinese). 姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(3): 347-355.
[69] WANG D K, WANG W D, QING Z X, et al. Study on mechanism of hypersonic wave drag reduction with pulsed laser energy[J]. Journal of Propulsion Technology, 2017, 38(7): 1675-1680 (in Chinese). 王殿恺, 王伟东, 卿泽旭, 等. 脉冲激光能量降低高超声速波阻机理研究[J]. 推进技术, 2017, 38(7): 1675-1680.
[70] FUJIWARA T. Propagation mechanism of laser-supported detonation wave[C]//29th Aerospace Sciences Meeting. Reston: AIAA, 1991.
[71] CANDLER G V, MACCORMACK R W. Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium[J]. Journal of Thermophysics and Heat Transfer, 1991, 5(3): 266-273.
[72] MAO M L, DONG W Z, DENG X G, et al. Numerical simulating study of the interaction between a high powered laser and the hypersonic flowfield about a spherecone[J]. Acta Aerodynamica Sinica, 2001, 19(2): 172-176 (in Chinese). 毛枚良, 董维中, 邓小刚, 等. 强激光与高超声速球锥流场干扰数值模拟研究[J]. 空气动力学学报, 2001, 19(2): 172-176.
[73] YANG P T, HONG Y J, HUANG H, et al. Numerical study on evolution of laser-induced shock wave[J]. High Power Laser and Particle Beams, 2010, 22(11): 2556-2560 (in Chinese). 杨鹏涛, 洪延姬, 黄辉, 等. 激光引致激波演化数值研究[J]. 强激光与粒子束, 2010, 22(11): 2556-2560.
[74] NI X W, WANG W Z, LU J, et al. Numerical simulation of laser-induced-air plasma shock wave[J]. Acta Armamentarii, 1998, 19(2): 134-138 (in Chinese). 倪晓武, 王文中, 陆建, 等. 强激光致空气击穿过程的数值模拟[J]. 兵工学报, 1998, 19(2): 134-138.
文章导航

/