材料工程与机械制造

一种广义Bodner-Partom黏塑性本构模型

  • 王常宇 ,
  • 徐可君 ,
  • 秦海勤 ,
  • 马中原 ,
  • 谢静 ,
  • 谢镇波
展开
  • 海军航空大学 青岛校区, 青岛 266041

收稿日期: 2021-06-23

  修回日期: 2021-07-12

  网络出版日期: 2021-08-03

基金资助

国家自然科学基金(11772089)

A generalized Bodner-Partom viscoplastic constitutive model

  • WANG Changyu ,
  • XU Kejun ,
  • QIN Haiqin ,
  • MA Zhongyuan ,
  • XIE Jing ,
  • XIE Zhenbo
Expand
  • Qingdao Branch, Naval Aviation University, Qingdao 266041, China

Received date: 2021-06-23

  Revised date: 2021-07-12

  Online published: 2021-08-03

Supported by

National Natural Science Foundation of China (11772089)

摘要

针对Bodner-Partom黏塑性本构模型描述合金材料的率相关塑性和循环硬化行为时精度不足的问题,在无屈服面统一黏塑性本构理论框架内对其进行了改进:利用塑性势函数重塑了流动法则,摆脱了Mises材料的限制;在内变量演化方程中引入塑性应变率修正项并由非线性因子控制,拓展了不同的硬化/恢复演变方向。利用FGH96合金在550℃下的单轴拉伸及低周疲劳试验数据将广义B-P模型与原始B-P模型进行了对比验证,结果表明本文模型的模拟效果与材料非弹性特征吻合良好,具有克服应力应变滞回曲线"过方"问题和表达平均应力循环松弛的能力。模型对不同硬化机制的考虑对于高温合金材料更具优越性。

本文引用格式

王常宇 , 徐可君 , 秦海勤 , 马中原 , 谢静 , 谢镇波 . 一种广义Bodner-Partom黏塑性本构模型[J]. 航空学报, 2022 , 43(12) : 426009 -426009 . DOI: 10.7527/S1000-6893.2021.26009

Abstract

To improve the modeling of rate-dependent plasticity and cyclic hardening behaviors of alloys with the Bodner-Partom unified viscoplastic constitutive model, the flow rule is established based on a plastic potential function and no longer limited to Mises criteria. In addition, a plastic strain rate term is introduced to diversify the dynamic recovery of kinematic hardening evolution. By comparing the fit of both generalized and original models with the experimental results, the characterized uniaxial tensile and low-cycle fatigue properties of FGH96 at 550℃ show that the modifications provide sound agreement with the inelastic properties, and the adaptability to overcoming the "oversquare" in hysteresis loop and the capability to express mean stress cyclic relaxation accurately are confirmed. The consideration of different hardening mechanisms brings more flexibility for alloys subjected to high temperature.

参考文献

[1] 李永池. 张量初步和近代连续介质力学概论[M]. 合肥:中国科学技术大学出版社, 2012. LI Y C. Introduction to tensor analysis and modern continuum mechanics[M]. Hefei:University of Science and Technology of China Press, 2012(in Chinese).
[2] CHABOCHE J L, KANOUTÉ P, AZZOUZ F. Cyclic inelastic constitutive equations and their impact on the fatigue life predictions[J]. International Journal of Plasticity, 2012, 35:44-66.
[3] 周柏卓, 张晓霞, 罗焰明. 正交各向异性材料粘塑性统一本构模型[J]. 推进技术, 1998, 19(1):89-93. ZHOU B Z, ZHANG X X, LUO Y M. A unified viscoplastic constitutive model of orthogonal anisotropic material[J]. Journal of Propulsion Technology, 1998, 19(1):89-93(in Chinese).
[4] BODNER S R, PARTOM Y. Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. Journal of Applied Mechanics, 1975, 42(2):385-389.
[5] MILLER A. An inelastic constitutive model for monotonic, cyclic, and creep deformation:part II-Application to type 304 stainless steel[J]. Journal of Engineering Materials and Technology, 1976, 98(2):106-112.
[6] ROWLEY M A, THORNTON E A. Constitutive modeling of the visco-plastic response of hastelloy-X and aluminum alloy 8009[J]. Journal of Engineering Materials and Technology, 1996, 118(1):19-27.
[7] SHI D Q, YANG X G, WANG Y R. Constitutive modeling of hardening and creep response of a nickel-based superalloy udimet 720Li[J]. Chinese Journal of Aeronautics, 2003, 16(3):187-192.
[8] SHI D Q, YANG X G, WANG Y R. Improvement on the modeling of rate-dependent plasticity and cyclic hardening by bodner-partom model[J]. Chinese Journal of Aeronautics, 2005, 18(1):83-89.
[9] BODNER S R, KALISZKY S. Unified plasticity for engineering applications. mathematical concepts and methods in science and engineering, vol 47[J]. Applied Mechanics Reviews, 2002, 55(6):B111.
[10] VENKATESH V, RACK H J. Elevated temperature hardening of INCONEL 690[J]. Mechanics of Materials, 1998, 30(1):69-81.
[11] KHEN R, RUBIN M B. Analytical modelling of second order effects in large deformation plasticity[J]. International Journal of Solids and Structures, 1992, 29(18):2235-2258.
[12] 周益春, 段祝平. 修正的Bodner-Partom本构模型[J]. 爆炸与冲击, 1993, 13(3):225-232. ZHOU Y C, DUAN Z P. Modified Bodner-Partom constitutive equation[J]. Explosion and Shock Waves, 1993, 13(3):225-232(in Chinese).
[13] SUN X W, LI Y C, HUANG R Y, et al. Viscoplastic damage-softening constitutive model for concrete subjected to uniaxial dynamic compression[J]. Journal of Beijing Institute of Technology, 2017, 26(4):427-433.
[14] BODNER S R, PARTOM I, PARTOM Y. Uniaxial cyclic loading of elastic-viscoplastic materials[J]. Journal of Applied Mechanics, 1979, 46(4):805-810.
[15] CHAN K S, BODNER S R, LINDHOLM U S. Phenomenological modeling of hardening and thermal recovery in metals[J]. Journal of Engineering Materials and Technology, 1988, 110(1):1-8.
[16] 卢孔汉, 张宏建, 贾鹏超. GH4169合金的循环本构模型研究[J]. 推进技术, 2019, 40(2):416-423. LU K H, ZHANG H J, JIA P C. Study on cyclic constitutive model for GH4169 alloy[J]. Journal of Propulsion Technology, 2019, 40(2):416-423(in Chinese).
[17] 石多奇, 杨晓光, 王延荣. 一种考虑平均应力松弛的多级硬化本构模型[J]. 航空动力学报, 2007, 22(5):755-760. SHI D Q, YANG X G, WANG Y R. A multi-stage hardening constitutive model considering mean stress relaxation[J]. Journal of Aerospace Power, 2007, 22(5):755-760(in Chinese).
[18] 肖阳, 秦海勤, 徐可君. 基于Bodner-Partom理论的FGH96合金本构建模研究[J]. 材料导报, 2020, 34(16):16125-16130. XIAO Y, QIN H Q, XU K J. Study on constitutive model for FGH96 superalloy based on Bodner-Partom theory[J]. Materials Reports, 2020, 34(16):16125-16130(in Chinese).
[19] BARI S, HASSAN T. Anatomy of coupled constitutive models for ratcheting simulation[J]. International Journal of Plasticity, 2000, 16(3-4):381-409.
[20] 杨晓光, 石多奇. 粘塑性本构理论及其应用[M]. 北京:国防工业出版社, 2013. YANG X G, SHI D Q. Viscoplastic constitutive theory and application[M]. Beijing:National Defense Industry Press, 2013(in Chinese).
[21] STOUFFER D C, BODNER S R. A constitutive model for the deformation induced anisotropic plastic flow of metals[J]. International Journal of Engineering Science, 1979, 17(6):757-764.
[22] KOCKS U F. Realistic constitutive relations for metal plasticity[J]. Materials Science and Engineering:A, 2001, 317(1-2):181-187.
[23] KOCKS U F. Constitutive behavior based on crystal plasticity[M]. Dordrecht:Springer, 1987.
[24] KOCKS U F, MECKING H. Physics and phenomenology of strain hardening:the FCC case[J]. Progress in Materials Science, 2003, 48(3):171-273.
[25] PHILLIPS A, LEE C W. Yield surfaces and loading surfaces. Experiments and recommendations[J]. International Journal of Solids and Structures, 1979, 15(9):715-729.
[26] ZIEBS J, MEERSMANN J, KUHN H J. Effects of proportional and nonproportional straining sequences on the hardening softening behavior of in 738-lc at elevated-temperatures[J]. European Journal of Mechanics a-Solids, 1994, 13(5):605-619.
[27] ABDEL-KARIM M, OHNO N. Kinematic hardening model suitable for ratchetting with steady-state[J]. International Journal of Plasticity, 2000, 16(3-4):225-240.
[28] MIZUNO M, MIMA Y, ABDEL-KARIM M, et al. Uniaxial ratchetting of 316FR steel at room temperature-part I:Experiments[J]. Journal of Engineering Materials and Technology, 2000, 122(1):29-34.
[29] OHNO N, ABDEL-KARIM M. Uniaxial ratchetting of 316FR steel at room temperature-part II:Constitutive modeling and simulation[J]. Journal of Engineering Materials and Technology, 2000, 122(1):35-41.
[30] DE SOUZA NETO E A. A simple robust numerical integration algorithm for a power-law visco-plastic model under both high and low rate-sensitivity[J]. Communications in Numerical Methods in Engineering, 2003, 20(1):1-17.
[31] 周计明, 齐乐华. 率相关本构方程积分新算法[J]. 应用力学学报, 2009, 26(4):762-766, 839. ZHOU J M, QI L H. New integration algorithm of rate dependent constitutive equation[J]. Chinese Journal of Applied Mechanics, 2009, 26(4):762-766, 839(in Chinese).
文章导航

/