流体力学与飞行力学

补气式等离子体合成射流激励器工作机制

  • 刘汝兵 ,
  • 韦文韬 ,
  • 李飞 ,
  • 林麒
展开
  • 1. 厦门大学 航空航天学院, 厦门 361102;
    2. 福建省等离子体与磁共振研究重点实验室, 厦门 361002

收稿日期: 2021-05-24

  修回日期: 2021-08-05

  网络出版日期: 2021-08-03

基金资助

国家自然科学基金(51707169);福建省自然科学基金(2019J01042);中国航空发动机集团产学研合作项目(HFZL2018CXY009);航空动力基金(6141B09050390);厦门大学大学生创新创业训练计划(202110384082)

Working mechanism of air-supplemented plasma synthetic jet actuator

  • LIU Rubing ,
  • WEI Wentao ,
  • LI Fei ,
  • LIN Qi
Expand
  • 1. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China;
    2. Fujian Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen 361102, China

Received date: 2021-05-24

  Revised date: 2021-08-05

  Online published: 2021-08-03

Supported by

National Natural Science Foundation of China (51707169);Natural Science Foundation of Fujian Province (2019J01042);Industry-University-Research Cooperation Project of China Aviation Engine Group (HFZL2018CXY009);Aviation Power Fund Project (6141B09050390);Xiamen University Student Innovation and Entrepreneurship Training Program Project (202110384082)

摘要

补气式等离子体合成射流(PSJ)激励器通过在常规激励器的腔体上外接单向阀,增加吸气复原阶段的补气量,提升射流能量。为防止漏气,对单向阀结构进行了特别设计,并在单向阀进气口打开和封闭时,分别测量了激励器射流峰值速度、腔体内部压力,及其放电电压和电流,探究单向阀补气改善射流性能的工作机制。结果表明,单向阀能够显著提高等离子体合成射流性能。射流穿透高度提升达30.0%,射流峰值速度增加达到18.7%,射流作用范围面积扩大达76.3%。但其有效作用频段仍与单向阀的响应频率和承受反向冲击压力的能力及激励器饱和工作频率密切相关。补气工作机制是单向阀补气与放电之间形成正向反馈作用,通过单向阀在吸气复原阶段扩大进气口面积,吸气复原更充分,腔内气压增大,使得气体击穿电压升高,增大能量沉积阶段的放电能量,提高腔内压力,产生更大内外压差,从而提升射流性能。射流喷出后腔内负压更大,也进一步促进了吸气复原,通过单向阀补气的作用更显著。

本文引用格式

刘汝兵 , 韦文韬 , 李飞 , 林麒 . 补气式等离子体合成射流激励器工作机制[J]. 航空学报, 2022 , 43(8) : 125854 -125854 . DOI: 10.7527/S1000-6893.2021.25854

Abstract

In order to improve the jet energy, a check valve is connected to the cavity of the conventional Plasma Synthetic Jet (PSJ) actuator to increase the air supply during the recovery stage. To prevent air leakage, the structure of check valve is specially designed. When the inlet of the check valve is open or closed, the peak velocity of the jet, the pressure inside the cavity, the discharge voltage and the discharge current of the actuator are measured respectively, and the working mechanism of the check valve to improve the jet performance is explored. The results show that the improved check valve can significantly improve the performance of PSJ. The jet height is increased by 30.0%, the jet peak velocity is increased by 18.7%, and the jet effective area is expanded by 76.3%. However, its effective working frequency range is still closely related to the response frequency of the check valve, the ability to withstand the reverse impact pressure and the saturation working frequency of the actuator. The working mechanism of the air-supplemented check valve is that the positive feedback is formed between the air supply and discharge of the actuator. Through the check valve, the area of the air inlet is expanded in the recovery stage and the recovery is more sufficient. Therefore, the air pressure in the cavity is increased, which increases the breakdown voltage of the gas, increases the discharge energy in the energy deposition stage, increases the peak discharge pressure, and produces a greater internal and external pressure difference, so as to improve the jet performance.

参考文献

[1] GROSSMAN K, BOHDAN C, VANWIE D. Sparkjet actuators for flow control[C]//41 st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003.
[2] CYBYK B, LAND H, SIMON D, et al. Experimental characterization of a supersonic flow control actuator[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
[3] 李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学: 技术科学, 2020, 50(10): 1252-1273. LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. Scientia Sinica (Technologica), 2020, 50(10): 1252-1273 (in Chinese).
[4] 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese).
[5] BELINGER A, HARDY P, BARRICAU P, et al. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator[J]. Journal of Physics D: Applied Physics, 2011, 44(36): 365201.
[6] POPKIN S H, CYBYK B, LAND B, et al. Recent performance-based advances in SparkJet actuator design for supersonic flow applications[C]//51 st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
[7] ZHOU Y, XIA Z X, WANG L, et al. Discharge and electrothermal efficiency analysis of capacitive discharge plasma synthetic jet actuator in single-shot mode[J]. Sensors and Actuators A: Physical, 2019, 287: 102-112.
[8] ZONG H H. Influence of nondimensional heating volume on efficiency of plasma synthetic jet actuators[J]. AIAA Journal, 2017, 56(5): 2075-2078.
[9] ZHANG Y C, TAN H J, HUANG H X, et al. Transient flow patterns of multiple plasma synthetic jets under different ambient pressures[J]. Flow, Turbulence and Combustion, 2018, 101(3): 741-757.
[10] WU S Q, LIU X Y, HUANG G W, et al. Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet[J]. Plasma Science and Technology, 2019, 21(7): 074007.
[11] SHIN J Y, KIM H J, AHN S, et al. A parametric study and analytic model development of sparkjet actuator using CFD[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
[12] YANG G, YAO Y F, FANG J, et al. Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control[J]. Chinese Journal of Aeronautics, 2016, 29(3): 617-629.
[13] DONG H, GENG X, SHI Z W, et al. On evolution of flow structures induced by nanosecond pulse discharge inside a plasma synthetic jet actuator[J]. Japanese Journal of Applied Physics, 2019, 58(2): 028002.
[14] 王林. 等离子体高能合成射流及其超声速流动控制机理研究[D]. 长沙: 国防科学技术大学, 2014. WANG L. Principle of plasma high-energy synthetic jet and supersonic flow control[D]. Changsha: National University of Defense Technology, 2014 (in Chinese).
[15] 吕元伟, 单勇, 张靖周, 等. 火花型激励合成射流瞬时流场测试[J]. 航空动力学报, 2017, 32(10): 2371-2377. LYU Y W, SHAN Y, ZHANG J Z, et al. Measurement on the instantaneous flow fields of a spark-excited synthetic jet[J]. Journal of Aerospace Power, 2017, 32(10): 2371-2377 (in Chinese).
[16] 宋慧敏, 吴俊锋, 张志波, 等. 三电极合成射流激励器电极布局与电源系统的匹配特性[J]. 高电压技术, 2017, 43(6): 1784-1791. SONG H M, WU J F, ZHANG Z B, et al. Arrangement of three-electrode synthetic jet actuator and its matching characteristics with power system[J]. High Voltage Engineering, 2017, 43(6): 1784-1791 (in Chinese).
[17] ZHANG Z B, WU Y, JIA M, et al. The multichannel discharge plasma synthetic jet actuator[J]. Sensors and Actuators A: Physical, 2017, 253: 112-117.
[18] ZHOU Y, XIA Z X, LUO Z B, et al. Experimental characteristics of a two-electrode plasma synthetic jet actuator array in serial[J]. Chinese Journal of Aeronautics, 2018, 31(12): 2234-2247.
[19] 邵涛, 韩磊, 罗振兵, 等. 基于Marx发生器的等离子体合成射流串联放电装置及方法: CN106050593B[P]. 2018-05-25. SHAO T, HAN L, LUO Z B, et al. Plasma synthesis jet flow serial connection discharge device based on Marx generator: CN106050593B[P]. 2018-05-25 (in Chinese).
[20] ZONG H H, PELT T, KOTSONIS M. Airfoil flow separation control with plasma synthetic jets at moderate Reynolds number[J]. Experiments in Fluids, 2018, 59(11): 1-19.
[21] CHEDEVERGNE F, LéON O, BODOC V, et al. Experimental and numerical response of a high-Reynolds-number M=0.6 jet to a Plasma Synthetic Jet actuator[J]. International Journal of Heat and Fluid Flow, 2015, 56: 1-15.
[22] 孙健, 牛中国, 刘汝兵, 等. 基于等离子体合成射流的飞翼布局模型主动流动控制风洞实验研究[J]. 实验流体力学, 2019, 33(4): 81-88. SUN J, NIU Z G, LIU R B, et al. The wind tunnel test of the active flow control on the flying wing model based on the plasma synthetic jet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 81-88 (in Chinese).
[23] EMERICK T, ALI M Y, FOSTER C, et al. SparkJet characterizations in quiescent and supersonic flowfields[J]. Experiments in Fluids, 2014, 55(12): 1-21.
[24] ZHOU Y, XIA Z X, LUO Z B, et al. Characterization of three-electrode SparkJet actuator for hypersonic flow control[J]. AIAA Journal, 2018, 57(2): 879-885.
[25] WANG H Y, LI J, JIN D, et al. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J]. Acta Astronautica, 2018, 142: 45-56.
[26] TANG M X, WU Y, WANG H Y, et al. Characterization of transverse plasma jet and its effects on ramp induced separation[J]. Experimental Thermal and Fluid Science, 2018, 99: 584-594.
[27] 顾仁勇, 单勇, 张靖周, 等. 火花型合成射流控制运输机后体流动分离的数值研究[J]. 航空动力学报, 2018, 33(8): 1855-1863. GU R Y, SHAN Y, ZHANG J Z, et al. Numerical study on transport aircraft after-body flow separation control by spark jet[J]. Journal of Aerospace Power, 2018, 33(8): 1855-1863 (in Chinese).
[28] ZHOU Y, XIA Z X, LUO Z B, et al. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control[J]. Acta Astronautica, 2017, 133: 95-102.
[29] LI J F, ZHANG X B. Active flow control for supersonic aircraft: a novel hybrid synthetic jet actuator[J]. Sensors and Actuators A: Physical, 2020, 302: 111770.
[30] 周岩, 夏智勋, 罗振兵, 等. 腔体增压等离子体合成射流激励器工作特性[J]. 国防科技大学学报, 2019, 41(6): 12-18. ZHOU Y, XIA Z X, LUO Z B, et al. Characterization of plasma synthetic jet actuator with cavity pressurization[J]. Journal of National University of Defense Technology, 2019, 41(6): 12-18 (in Chinese).
[31] 刘汝兵, 王萌萌, 郝明, 等. 补气式等离子体射流发生器实验研究[J]. 航空学报, 2016, 37(6): 1713-1721. LIU R B, WANG M M, HAO M, et al. Experimental research on air supplementing type plasma synthetic jet generator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1713-1721 (in Chinese).
[32] 刘汝兵, 李飞, 韦文韬, 等. 一种单向阀和等离子体合成射流激励器: CN112013138B[P]. 2021-07-13. LIU R B, LI F, WEI W T, et al. One-way valve and plasma synthetic jet actuator: CN112013138B[P]. 2021-07-13 (in Chinese).
[33] DE LUCA L, GIRFOGLIO M, COPPOLA G. Modeling and experimental validation of the frequency response of synthetic jet actuators[J]. AIAA Journal, 2014, 52(8): 1733-1748.
[34] 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62(12): 125207. WANG L, LUO Z B, XIA Z X, et al. Energy efficiency and performance characteristics of plasma synthetic jet[J]. Acta Physica Sinica, 2013, 62(12): 125207 (in Chinese).
[35] 刘庆明, 汪建平, 李磊, 等. 电火花放电能量及其损耗的计算[J]. 高电压技术, 2014, 40(4): 1255-1260. LIU Q M, WANG J P, LI L, et al. Calculation of electric spark discharge energy and its energy loss[J]. High Voltage Engineering, 2014, 40(4): 1255-1260 (in Chinese).
[36] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996: 105-107. XU X J, ZU D C. Gas discharge physics[M]. Shanghai: Fudan University Press, 1996: 105-107.
[37] ZONG H H, KOTSONIS M. Effect of velocity ratio on the interaction between plasma synthetic jets and turbulent cross-flow[J]. Journal of Fluid Mechanics, 2019, 865: 928-962.
文章导航

/