[1] DO H, CAPPELLI M A, MUNGAL M G. Plasma assisted cavity flame ignition in supersonic flows[J]. Combustion and Flame, 2010, 157(9):1783-1794.
[2] 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1):261-273. YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):261-273(in Chinese).
[3] 陈钱, 张会强, 王兵, 等. 超声速混合层燃烧研究进展[J]. 航空学报, 2017, 38(1):020036. CHEN Q, ZHANG H Q, WANG B, et al. Research progress of combustion in supersonic mixing layers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):020036(in Chinese).
[4] COOK S, HUETER U. NASA's Integrated Space Transportation Plan-3rd generation reusable launch vehicle technology update[J]. Acta Astronautica, 2003, 53(4-10):719-728.
[5] JU Y G. Recent progress and challenges in fundamental combustion research[J]. Advances in Mechanics, 2014, 44:201402.
[6] CHEN Z. Effects of radiative loss on premixed planar flame propagation[J]. Proceedings of the Combustion Institute, 2021, 38(3):4683-4690.
[7] WANG Y Q, MOVAGHAR A, WANG Z Y, et al. Laminar flame speeds of methane/air mixtures at engine conditions:Performance of different kinetic models and power-law correlations[J]. Combustion and Flame, 2020, 218:101-108.
[8] WANG Y Q, HAN W, CHEN Z. Effects of stratification on premixed cool flame propagation and modeling[J]. Combustion and Flame, 2021, 229:111394.
[9] REN Z X, WANG B, ZHAO D, et al. Flame propagation involved in vortices of supersonic mixing layers laden with droplets:Effects of ambient pressure and spray equivalence ratio[J]. Physics of Fluids, 2018, 30(10):106107.
[10] REN Z X, WANG B, XIANG G M, et al. Supersonic spray combustion subject to scramjets:Progress and challenges[J]. Progress in Aerospace Sciences, 2019, 105:40-59.
[11] WEN H C, WANG B. Experimental study of perforated-wall rotating detonation combustors[J]. Combustion and Flame, 2020, 213:52-62.
[12] REN Z Y, LU Z, HOU L Y, et al. Numerical simulation of turbulent combustion:Scientific challenges[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(8):1495-1503.
[13] 王健平, 姚松柏. 连续爆轰发动机原理与技术[M]. 北京:科学出版社, 2018. WANG J P, YAO S B. Theory and technology of continuous detonation engine[M]. Beijing:Science Press, 2018(in Chinese).
[14] 姜宗林. 气体爆轰物理及其统一框架理论[M]. 北京:科学出版社, 2020. JIANG Z L. Gaseous detonation physics and its universal framework theory[M]. Beijing:Science Press, 2020(in Chinese).
[15] TENG H H, TIAN C, ZHANG Y N, et al. Morphology of oblique detonation waves in a stoichiometric hydrogen-air mixture[J]. Journal of Fluid Mechanics, 2021, 913:A1.
[16] 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展[J]. 推进技术, 2021, 42(4):721-737. WANG B, XIE Q F, WEN H C, et al. Research progress of detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4):721-737(in Chinese).
[17] 汪秋笑, 黄东欣, 孟华. 甲烷-液氧超临界压力非预混湍流燃烧的数值模拟[J]. 航空学报, 2016, 37(7):2132-2143. WANG Q X, HUANG D X, MENG H. Numerical simulation of CH4-LOx non-premixed turbulent combustion at supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2132-2143(in Chinese).
[18] 张鹏, 洪延姬, 丁小雨, 等. 等离子体增强含硼燃气二次燃烧实验分析[J]. 航空学报, 2016, 37(9):2721-2728. ZHANG P, HONG Y J, DING X Y, et al. Experimental analysis on plasma assisted secondary combustion of boron-based gas[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2721-2728(in Chinese).
[19] 杨立军, 刘陆昊, 富庆飞. 非牛顿流体射流雾化特性研究进展[J]. 航空学报, 2021, 42(12):624974. YANG L J, LIU L H, FU Q F. Research progress in atomization characteristics of non-Newtonian fluid jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12):624974(in Chinese).
[20] YAN B, XU A G, ZHANG G C, et al. Lattice Boltzmann model for combustion and detonation[J]. Frontiers of Physics, 2013, 8(1):94-110.
[21] CHEN F, XU A G, ZHANG G C. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh-Taylor Instability[J]. Frontiers of Physics, 2016, 11(6):1-14.
[22] LAI H L, XU A G, ZHANG G C, et al. Non-equilibrium thermo-hydrodynamic effects on the Rayleigh-Taylor instability in compressible flows[J]. Physical Review E, 2016, 94(2-1):023106.
[23] ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient[J]. Combustion and Flame, 2016, 173:483-492.
[24] CHEN F, XU A G, ZHANG G C. Collaboration and competition between Richtmyer-Meshkov instability and Rayleigh-Taylor instability[J]. Physics of Fluids, 2018, 30(10):102105.
[25] GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann trans-scale modeling of high-speed compressible flows[J]. Physical Review E, 2018, 97(5-1):053312.
[26] GAN Y B, XU A G, ZHANG G C, et al. Nonequilibrium and morphological characterizations of Kelvin-Helmholtz instability in compressible flows[J]. Frontiers of Physics, 2019, 14(4):1-17.
[27] ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method for non-equilibrium flows:Based on Shakhov model[J]. Computer Physics Communications, 2019, 238:50-65.
[28] ZHANG Y D, XU A G, ZHANG G C, et al. Entropy production in thermal phase separation:A kinetic-theory approach[J]. Soft Matter, 2019, 15(10):2245-2259.
[29] BOLLINGER L E, FONG M C, EDSE R. Experimental measurements and theoretical analysis of detonation induction distances[J]. ARS Journal, 1961, 31(5):588-595.
[30] EIDELMAN S, GROSSMANN W. Pulsed detonation engine experimental and theoretical review:AIAA-1992-3168[R]. Reston:AIAA, 1992.
[31] BAUMANN M, MARE F, JANICKA J. On the validation of large eddy simulation applied to internal combustion engine flows part II:Numerical analysis[J]. Flow, Turbulence and Combustion, 2014, 92(1-2):299-317.
[32] TANG X M, WANG J P, SHAO Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4):997-1008.
[33] NEJAAMTHEEN M N, KIM J M, CHOI J Y. Review on the research progresses in rotating detonation engine[M]//Detonation Control for Propulsion. Berlin:Springer, 2017:109-159.
[34] REN Z X, WANG B, XIANG G M, et al. Numerical analysis of wedge-induced oblique detonations in two-phase kerosene-air mixtures[J]. Proceedings of the Combustion Institute, 2019, 37(3):3627-3635.
[35] ZHENG Y S, WANG C, WANG Y H, et al. Numerical research of rotating detonation initiation processes with different injection patterns[J]. International Journal of Hydrogen Energy, 2019, 44(29):15536-15552.
[36] WATANABE H, MATSUO A, CHINNAYYA A, et al. Numerical analysis of the mean structure of gaseous detonation with dilute water spray[J]. Journal of Fluid Mechanics, 2020, 887:A4.
[37] UY K C K, SHI L S, WEN C Y. Numerical analysis of the vibration-chemistry coupling effect on one-dimensional detonation stability[J]. Aerospace Science and Technology, 2020, 107:106327.
[38] NI X D, WENG C S, XU H, et al. Numerical analysis of heat flow in wall of detonation tube during pulse detonation cycle[J]. Applied Thermal Engineering, 2021, 187:116528.
[39] KAWAKATSU T, UEDA A. A molecular dynamics study of relaxation processes at a detonation wave front[J]. Journal of the Physical Society of Japan, 1988, 57(9):2955-2965.
[40] BRENNER D W, ROBERTSON D H, ELERT M L, et al. Detonations at nanometer resolution using molecular dynamics[J]. Physical Review Letters, 1993, 70(14):2174-2177.
[41] LIU H, ZHANG Y, KANG W, et al. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons[J]. Physical Review E, 2017, 95(2-1):023201.
[42] KOLERA-GOKULA H, ECHEKKI T. Direct numerical simulation of premixed flame kernel-vortex interactions in hydrogen-air mixtures[J]. Combustion and Flame, 2006, 146(1-2):155-167.
[43] ROMICK C M, ASLAM T D, POWERS J M. The effect of diffusion on the dynamics of unsteady detonations[J]. Journal of Fluid Mechanics, 2012, 699:453-464.
[44] SUCCI S. The lattice Boltzmann equation:For fluid dynamics and beyond[M]. New York:Princeton University Press, 2001.
[45] SUCCI S, BELLA G, PAPETTI F. Lattice kinetic theory for numerical combustion[J]. Journal of Scientific Computing, 1997, 12(4):395-408.
[46] FILIPPOVA O, HAENEL D. A novel numerical scheme for reactive flows at low Mach numbers[J]. Computer Physics Communications, 2000, 129(1-3):267-274.
[47] CHIAVAZZO E, KARLIN I V, GORBAN A N, et al. Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations[J]. Combustion and Flame, 2010, 157(10):1833-1849.
[48] CHEN S, MI J C, LIU H, et al. First and second thermodynamic-law analyses of hydrogen-air counter-flow diffusion combustion in various combustion modes[J]. International Journal of Hydrogen Energy, 2012, 37(6):5234-5245.
[49] PAN Y Y, KONG S C. Simulation of biomass particle evolution under pyrolysis conditions using lattice Boltzmann method[J]. Combustion and Flame, 2017, 178:21-34.
[50] FENG Y L, TAYYAB M, BOIVIN P. A Lattice-Boltzmann model for low-Mach reactive flows[J]. Combustion and Flame, 2018, 196:249-254.
[51] LIU Y Z, XIA J, WAN K D, et al. Simulation of char-pellet combustion and sodium release inside porous char using lattice Boltzmann method[J]. Combustion and Flame, 2020, 211:325-336.
[52] TAYYAB M, RADISSON B, ALMARCHA C, et al. Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[J]. Combustion and Flame, 2020, 221:103-109.
[53] TAYYAB M, ZHAO S, FENG Y, et al. Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[J]. Combustion and Flame, 2020, 211:173-184.
[54] XU A G, ZHANG G C, GAN Y B, et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Frontiers of Physics, 2012, 7(5):582-600.
[55] XU A G, LIN C D, ZHANG G C, et al. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion[J]. Physical Review E, 2015, 91(4):043306.
[56] 许爱国, 张广财, 应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展[J]. 物理学报, 2015, 64(18):184701. XU A G, ZHANG G C, YING Y J. Progess of discrete Boltzmann modeling and simulation of combustion system[J]. Acta Physica Sinica, 2015, 64(18):184701(in Chinese).
[57] XU A G, ZHANG G C, ZHANG Y D. Discrete Boltzmann modeling of compressible flows[M]//KYZAS G Z, MITROPOULOS A C. Kinetic Theory. London:IntechOpen, 2018:5-24.
[58] 许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3):138-169. XU A G, CHEN J, SONG J H, et al. Progress of discrete Boltzmann study on multiphase complex flows[J]. Acta Aerodynamica Sinica, 2021, 39(3):138-169(in Chinese).
[59] 许爱国, 宋家辉, 陈锋, 等. 基于相空间的复杂物理场建模与分析方法[J/OL]. 计算物理, (2021-05-25)[2021-06-30]. https://kns.cnki.net/kcms/detail/11.2011.O4.20210524.1535.002.html. XU A G, SONG J H, CHEN F, et al. Modeling and analysis methods for complex fields based on phase space[J/OL]. Chinese Journal of Computational Physics, (2021-05-25)[2021-06-30]. https://kns.cnki.net/kcms/detail/11.2011.O4.20210524.1535.002.html (in Chinese).
[60] XU A G, ZHANG G C, LI H, et al. Temperature pattern dynamics in shocked porous materials[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(8):1466-1474.
[61] MCNAMARA G, ZANETTI G. Use of the Boltzmann equation to simulate lattice gas automata[J]. Physical Review Letters, 1988, 61(20):2332-2335.
[62] LEE T D, YANG C N. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model[J]. Physical Review, 1952, 87(3):410-419.
[63] 许爱国, 张广财, 李英骏, 等. 非平衡与多相复杂系统模拟研究:Lattice Boltzmann动理学理论与应用[J]. 物理学进展, 2014, 34(3):136-167. XU A G, ZHANG G C, LI Y J, et al. Modeling and simulation of nonequilibrium and multiphase complex systems-Lattice Boltzmann kinetic theory and application[J]. Progress in Physics, 2014, 34(3):136-167(in Chinese).
[64] LIN C D, XU A G, ZHANG G C, et al. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows[J]. Physical Review E, 2017, 96(5):053305.
[65] XU A G, ZHANG G C, YING Y J, et al. Complex fields in heterogeneous materials under shock:Modeling, simulation and analysis[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(5):1-49.
[66] XUE K, SHI X L, ZENG J S, et al. Explosion-driven interfacial instabilities of granular media[J]. Physics of Fluids, 2020, 32(8):084104.
[67] 刘澜, 薛琨, 史晓亮, 等.一种准二维柱面爆炸波加载装置的设计与验证[J/OL].气体物理,(2021-05-28)[2021-07-01]. https://doi.org/10.19527/j.cnki.2096-1642.0887. LIU L, XUE K, SHI X L, et al. Design and verification of a quasi-two-dimensional shock wave loading device[J/OL]. Physics of Gases,(2021-05-28)[2021-07-01]. https://doi.org/10.19527/j.cnki.2096-1642.0887 (in Chinese).
[68] 杨理, 岳连捷, 张新宇. 斜爆轰波的波角和法向速度-曲率关系初探[J]. 航空学报, 2020, 41(11):123701. YANG L, YUE L J, ZHANG X Y. Preliminary study on wave angle and normal velocity-curvature relation of oblique detonation wave[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):123701(in Chinese).
[69] 孟宇, 顾洪斌, 张新宇. 微波对超声速燃烧火焰结构的影响[J]. 航空学报, 2019, 40(12):123224. MENG Y, GU H B, ZHANG X Y. Influence of microwave on structure of supersonic combustion flame[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):123224(in Chinese).
[70] LIN C D, XU A G, ZHANG G C, et al. Polar coordinate lattice Boltzmann kinetic modeling of detonation phenomena[J]. Communications in Theoretical Physics, 2014, 62(5):737-748.
[71] XU A G, ZHANG G C, ZHANG Y D, et al. Discrete Boltzmann model for implosion- and explosion-related compressible flow with spherical symmetry[J]. Frontiers of Physics, 2018, 13(5):135102.
[72] LIN C D, XU A G, ZHANG G C, et al. Double-distribution-function discrete Boltzmann model for combustion[J]. Combustion and Flame, 2016, 164:137-151.
[73] LIN C D, LUO K H, FEI L L, et al. A multi-component discrete Boltzmann model for nonequilibrium reactive flows[J]. Scientific Reports, 2017, 7(1):14580.
[74] LIN C D, LUO K H. MRT discrete Boltzmann method for compressible exothermic reactive flows[J]. Computers & Fluids, 2018, 166:176-183.
[75] LIN C D, LUO K H. Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method[J]. Combustion and Flame, 2018, 198:356-362.
[76] ZHANG Y D, XU A G, ZHANG G C, et al. A one-dimensional discrete Boltzmann model for detonation and an abnormal detonation phenomenon[J]. Communications in Theoretical Physics, 2019, 71(1):117.
[77] LIN C D, LUO K H. Kinetic simulation of unsteady detonation with thermodynamic nonequilibrium effects[J]. Combustion, Explosion, and Shock Waves, 2020, 56(4):435-443.
[78] NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics[J]. Combustion Theory and Modelling, 2005, 9(3):385-401.
[79] LIN C D, SU X L, ZHANG Y D. Hydrodynamic and thermodynamic nonequilibrium effects around shock waves:Based on a discrete boltzmann method[J]. Entropy, 2020, 22(12):1397.
[80] JI Y, LIN C D, LUO K H. Three-dimensional multiple-relaxation-time discrete Boltzmann model of compressible reactive flows with nonequilibrium effects[J]. AIP Advances, 2021, 11(4):045217.
[81] 许爱国, 张广财, 甘延标. 相分离过程的离散Boltzmann方法研究进展[J]. 力学与实践, 2016, 38(4):361-374. XU A G, ZHANG G C, GAN Y B. Progress in studies on discrete Boltzmann modeling of phase separation process[J]. Mechanics in Engineering, 2016, 38(4):361-374(in Chinese).
[82] GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann modeling of multiphase flows:Hydrodynamic and thermodynamic non-equilibrium effects[J]. Soft Matter, 2015, 11(26):5336-5345.
[83] GAN Y B, XU A G, ZHANG G C, et al. Lattice BGK kinetic model for high-speed compressible flows:Hydrodynamic and nonequilibrium behaviors[J]. EPL (Europhysics Letters), 2013, 103(2):24003.
[84] ZHANG Y D, XU A G, QIU J J, et al. Kinetic modeling of multiphase flow based on simplified Enskog equation[J]. Frontiers of Physics, 2020, 15(6):62503.
[85] LI D M, LAI H L, XU A G, et al. Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows[J]. Acta Physica Sinica, 2018, 67(8):080501.
[86] CHEN F, XU A G, ZHANG Y D, et al. Morphological and non-equilibrium analysis of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability[J]. Physics of Fluids, 2020, 32(10):104111.
[87] YE H Y, LAI H L, LI D M, et al. Knudsen number effects on two-dimensional Rayleigh-Taylor instability in compressible fluid:Based on a discrete Boltzmann method[J]. Entropy, 2020, 22(5):500.
[88] ZHANG D J, XU A G, ZHANG Y D, et al. Two-fluid discrete Boltzmann model for compressible flows:Based on ellipsoidal statistical Bhatnagar-Gross-Krook[J]. Physics of Fluids, 2020, 32(12):126110.
[89] ZHANG G, XU A G, ZHANG D J, et al. Delineation of the flow and mixing induced by Rayleigh-Taylor instability through tracers[J]. Physics of Fluids, 2021, 33(7):076105.
[90] CHEN L, LAI H L, LIN C D, et al. Specific heat ratio effects of compressible Rayleigh-Taylor instability studied by discrete Boltzmann method[J]. Frontiers of Physics, 2021, 16(5):1-12.