多相流与反应流的机理、模型及其调控技术专栏

燃烧多相流的介尺度动理学建模研究进展

  • 许爱国 ,
  • 单奕铭 ,
  • 陈锋 ,
  • 甘延标 ,
  • 林传栋
展开
  • 1. 北京应用物理与计算数学研究所 计算物理实验室, 北京 100088;
    2. 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081;
    3. 北京大学 应用物理与技术研究中心 高能量密度物理数值模拟教育部重点实验室, 北京 100871;
    4. 山东交通学院 航空学院, 济南 250357;
    5. 北华航天工业学院 河北省跨气水介质飞行器重点实验室, 廊坊 065000;
    6. 中山大学 中法核工程与技术学院, 珠海 519082

收稿日期: 2021-05-19

  修回日期: 2021-06-23

  网络出版日期: 2021-08-03

基金资助

国家自然科学基金(11772064,11875001,51806116);中国工程物理研究院创新发展基金创新项目(CX2019033);北京理工大学爆炸科学与技术国家重点实验室开放课题(KFJJ21-16M);山东省自然科学基金(ZR2020MA061);山东省高等学校青创科技支持计划(2019KJJ009)

Progress of mesoscale modeling and investigation of combustion multiphase flow

  • XU Aiguo ,
  • SHAN Yiming ,
  • CHEN Feng ,
  • GAN Yanbiao ,
  • LIN Chuandong
Expand
  • 1. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
    2. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
    3. Key Laboratory of High Energy Density Physics Simulations, Ministry of Education, Center for Applied Physics and Technology, Peking University, Beijing 100871, China;
    4. School of Aeronautics, Shandong Jiaotong University, Jinan 250357, China;
    5. Hebei Key Laboratory of Trans-Media Aerial Underwater Vehicle, North China Institute of Aerospace Engineering, Langfang 065000, China;
    6. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

Received date: 2021-05-19

  Revised date: 2021-06-23

  Online published: 2021-08-03

Supported by

National Natural Science Foundation of China (11772064, 11875001, 51806116); China Academy of Engineering Physics Foundation (CX2019033); the Opening Project of State Key Laboratory of Explosion Science and Technology of Beijing Institute of Technology (KFJJ21-16M); Natural Science Foundation of Shandong Province (ZR2020MA061); Shandong Province Higher Educational Youth Innovation Science and Technology Program (2019KJJ009).

摘要

基于求解Navier-Stokes方程组的传统计算流体力学已经在诸多领域取得了巨大的成功,但在航空、航天、微流控等领域也遇到了新的瓶颈与挑战。其原因分为2个方面:①物理建模层面的问题;②离散格式带来的数值精度和稳定性问题。微尺度燃烧等一系列燃烧新概念的研究表明,特征更加丰富但以前知之甚少的热力学非平衡行为蕴含着大量待开发的物理功能。物理模型合理和具备相应功能是数值仿真研究的前提;物理建模层面的问题无法通过数值精度的提高来解决。本文从物理建模与复杂物理场分析角度,介绍了非平衡燃烧系统离散玻尔兹曼建模方法(DBM)的研究进展。DBM是非平衡统计物理学粗粒化建模理论在流体力学领域的具体应用之一,是相空间描述方法在离散玻尔兹曼方程形式下的进一步发展。它选取一个视角,研究系统的一组动理学性质,因而要求描述这组性质的动理学矩在模型简化中保值;以该组动理学矩的独立分量为基,构建相空间,使用该相空间和其子空间来描述系统的非平衡行为特征;研究视角和建模精度随着研究推进而调整。借助DBM可以研究反应过程中不同自由度内能之间的不平衡和相互转换等Navier-Stokes模型无法模拟的动理学过程。在内爆和外爆过程中,几何汇聚与发散效应等效于一个"外场力",在球心处系统始终处于热力学平衡态;在冯·纽曼压强峰处,系统不是偏离平衡最远,而是在平衡态附近;在冯·纽曼峰后反应区以外,Chapmann-Jouguet理论值、Zeldovich-Neumann-Doering (ZND)理论值和DBM结果相互验证;在反应区内DBM结果与ZND结果一致;在冯·纽曼压强峰前的压缩阶段,DBM模拟结果在物理上更合理。在冲击压缩过程中,相对于其他自由度,压缩波所在自由度上的内能先增加,因而这一自由度上的内能总是朝着正向偏离其平衡态值,而横向自由度上的内能总是朝着逆向偏离其平衡态值。在二流体模型视角下,反应物和产物朝着相反的方向偏离热力学平衡态。

本文引用格式

许爱国 , 单奕铭 , 陈锋 , 甘延标 , 林传栋 . 燃烧多相流的介尺度动理学建模研究进展[J]. 航空学报, 2021 , 42(12) : 625842 -625842 . DOI: 10.7527/S1000-6893.2021.25842

Abstract

Traditional computational fluid dynamics based on solving Navier-Stokes equations has achieved great success in many fields, but it has also encountered new bottlenecks and challenges in aerospace, microfluidic and other fields. The reasons can be divided into two aspects:(A) the problem of physical modeling; (B) the numerical accuracy and stability caused by discrete scheme. Reasonable and functional physical model is the premise of numerical simulation research. Problems at the level of physical modeling cannot be solved by improving numerical accuracy. A series of new concepts of combustion such as micro-scale combustion remind us that these more abundant but previously poorly understood characteristics of non-equilibrium behavior contains a large number of physical functions to be explored. In this paper we review the progress of Discrete Boltzmann Modeling method (DBM) for nonequilibrium combustion from the perspective of physical modeling and complex physical field analysis. DBM is one of the specific applications of coarse-grained modeling theory in non-equilibrium statistical physics in the field of fluid mechanics. It is a further development of phase space description method in the form of discrete Boltzmann equation. The methodology of DBM is to decompose a complex problem and select a perspective to study a set of kinetic properties of the system, so it is required that the kinetic moments describing this set of properties maintain their values in the model simplification. Based on the independent components of the kinetic moments, the phase space is constructed. The phase space and its subspaces are used to describe the non-equilibrium behavior of the system. The research perspective and modeling accuracy will be adjusted as the research progresses. With the help of DBM, kinetic processes such as the non-equilibrium and mutual conversion of internal energy in different degrees of freedom during the reaction process, which cannot be simulated by Navier-Stokes model, can be studied. In the process of internal and external explosions, the geometric convergent and divergent effects are equivalent to an "external field force", and the system is always in thermodynamic equilibrium state at the center of the sphere. At the von Neumann pressure peak, the system is not the furthest off equilibrium, but near equilibrium. The theoretical Chapmann-Jouguet values, the theoretical Zeldovich-Neumann-Doering (ZND) values and the DBM results are mutually verified outside the post-peak reaction region of von Neumann. The results of DBM in the reaction zone are consistent with those of ZND. In the compression stage before the von Neumann pressure peak, the DBM results are more physically reasonable. In the process of shock compression, compared with other degrees of freedom, the internal energy on the degree of freedom where the compression wave is located increases first, so the internal energy on this degree of freedom always deviates from its equilibrium state in the positive direction, while the internal energy on the transverse degree of freedom always deviates from its equilibrium state in the negative direction. From the perspective of the two-fluid model, the reactants and products deviate from thermodynamic equilibrium in opposite directions.

参考文献

[1] DO H, CAPPELLI M A, MUNGAL M G. Plasma assisted cavity flame ignition in supersonic flows[J]. Combustion and Flame, 2010, 157(9):1783-1794.
[2] 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1):261-273. YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):261-273(in Chinese).
[3] 陈钱, 张会强, 王兵, 等. 超声速混合层燃烧研究进展[J]. 航空学报, 2017, 38(1):020036. CHEN Q, ZHANG H Q, WANG B, et al. Research progress of combustion in supersonic mixing layers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):020036(in Chinese).
[4] COOK S, HUETER U. NASA's Integrated Space Transportation Plan-3rd generation reusable launch vehicle technology update[J]. Acta Astronautica, 2003, 53(4-10):719-728.
[5] JU Y G. Recent progress and challenges in fundamental combustion research[J]. Advances in Mechanics, 2014, 44:201402.
[6] CHEN Z. Effects of radiative loss on premixed planar flame propagation[J]. Proceedings of the Combustion Institute, 2021, 38(3):4683-4690.
[7] WANG Y Q, MOVAGHAR A, WANG Z Y, et al. Laminar flame speeds of methane/air mixtures at engine conditions:Performance of different kinetic models and power-law correlations[J]. Combustion and Flame, 2020, 218:101-108.
[8] WANG Y Q, HAN W, CHEN Z. Effects of stratification on premixed cool flame propagation and modeling[J]. Combustion and Flame, 2021, 229:111394.
[9] REN Z X, WANG B, ZHAO D, et al. Flame propagation involved in vortices of supersonic mixing layers laden with droplets:Effects of ambient pressure and spray equivalence ratio[J]. Physics of Fluids, 2018, 30(10):106107.
[10] REN Z X, WANG B, XIANG G M, et al. Supersonic spray combustion subject to scramjets:Progress and challenges[J]. Progress in Aerospace Sciences, 2019, 105:40-59.
[11] WEN H C, WANG B. Experimental study of perforated-wall rotating detonation combustors[J]. Combustion and Flame, 2020, 213:52-62.
[12] REN Z Y, LU Z, HOU L Y, et al. Numerical simulation of turbulent combustion:Scientific challenges[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(8):1495-1503.
[13] 王健平, 姚松柏. 连续爆轰发动机原理与技术[M]. 北京:科学出版社, 2018. WANG J P, YAO S B. Theory and technology of continuous detonation engine[M]. Beijing:Science Press, 2018(in Chinese).
[14] 姜宗林. 气体爆轰物理及其统一框架理论[M]. 北京:科学出版社, 2020. JIANG Z L. Gaseous detonation physics and its universal framework theory[M]. Beijing:Science Press, 2020(in Chinese).
[15] TENG H H, TIAN C, ZHANG Y N, et al. Morphology of oblique detonation waves in a stoichiometric hydrogen-air mixture[J]. Journal of Fluid Mechanics, 2021, 913:A1.
[16] 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展[J]. 推进技术, 2021, 42(4):721-737. WANG B, XIE Q F, WEN H C, et al. Research progress of detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4):721-737(in Chinese).
[17] 汪秋笑, 黄东欣, 孟华. 甲烷-液氧超临界压力非预混湍流燃烧的数值模拟[J]. 航空学报, 2016, 37(7):2132-2143. WANG Q X, HUANG D X, MENG H. Numerical simulation of CH4-LOx non-premixed turbulent combustion at supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2132-2143(in Chinese).
[18] 张鹏, 洪延姬, 丁小雨, 等. 等离子体增强含硼燃气二次燃烧实验分析[J]. 航空学报, 2016, 37(9):2721-2728. ZHANG P, HONG Y J, DING X Y, et al. Experimental analysis on plasma assisted secondary combustion of boron-based gas[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2721-2728(in Chinese).
[19] 杨立军, 刘陆昊, 富庆飞. 非牛顿流体射流雾化特性研究进展[J]. 航空学报, 2021, 42(12):624974. YANG L J, LIU L H, FU Q F. Research progress in atomization characteristics of non-Newtonian fluid jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12):624974(in Chinese).
[20] YAN B, XU A G, ZHANG G C, et al. Lattice Boltzmann model for combustion and detonation[J]. Frontiers of Physics, 2013, 8(1):94-110.
[21] CHEN F, XU A G, ZHANG G C. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh-Taylor Instability[J]. Frontiers of Physics, 2016, 11(6):1-14.
[22] LAI H L, XU A G, ZHANG G C, et al. Non-equilibrium thermo-hydrodynamic effects on the Rayleigh-Taylor instability in compressible flows[J]. Physical Review E, 2016, 94(2-1):023106.
[23] ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient[J]. Combustion and Flame, 2016, 173:483-492.
[24] CHEN F, XU A G, ZHANG G C. Collaboration and competition between Richtmyer-Meshkov instability and Rayleigh-Taylor instability[J]. Physics of Fluids, 2018, 30(10):102105.
[25] GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann trans-scale modeling of high-speed compressible flows[J]. Physical Review E, 2018, 97(5-1):053312.
[26] GAN Y B, XU A G, ZHANG G C, et al. Nonequilibrium and morphological characterizations of Kelvin-Helmholtz instability in compressible flows[J]. Frontiers of Physics, 2019, 14(4):1-17.
[27] ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method for non-equilibrium flows:Based on Shakhov model[J]. Computer Physics Communications, 2019, 238:50-65.
[28] ZHANG Y D, XU A G, ZHANG G C, et al. Entropy production in thermal phase separation:A kinetic-theory approach[J]. Soft Matter, 2019, 15(10):2245-2259.
[29] BOLLINGER L E, FONG M C, EDSE R. Experimental measurements and theoretical analysis of detonation induction distances[J]. ARS Journal, 1961, 31(5):588-595.
[30] EIDELMAN S, GROSSMANN W. Pulsed detonation engine experimental and theoretical review:AIAA-1992-3168[R]. Reston:AIAA, 1992.
[31] BAUMANN M, MARE F, JANICKA J. On the validation of large eddy simulation applied to internal combustion engine flows part II:Numerical analysis[J]. Flow, Turbulence and Combustion, 2014, 92(1-2):299-317.
[32] TANG X M, WANG J P, SHAO Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4):997-1008.
[33] NEJAAMTHEEN M N, KIM J M, CHOI J Y. Review on the research progresses in rotating detonation engine[M]//Detonation Control for Propulsion. Berlin:Springer, 2017:109-159.
[34] REN Z X, WANG B, XIANG G M, et al. Numerical analysis of wedge-induced oblique detonations in two-phase kerosene-air mixtures[J]. Proceedings of the Combustion Institute, 2019, 37(3):3627-3635.
[35] ZHENG Y S, WANG C, WANG Y H, et al. Numerical research of rotating detonation initiation processes with different injection patterns[J]. International Journal of Hydrogen Energy, 2019, 44(29):15536-15552.
[36] WATANABE H, MATSUO A, CHINNAYYA A, et al. Numerical analysis of the mean structure of gaseous detonation with dilute water spray[J]. Journal of Fluid Mechanics, 2020, 887:A4.
[37] UY K C K, SHI L S, WEN C Y. Numerical analysis of the vibration-chemistry coupling effect on one-dimensional detonation stability[J]. Aerospace Science and Technology, 2020, 107:106327.
[38] NI X D, WENG C S, XU H, et al. Numerical analysis of heat flow in wall of detonation tube during pulse detonation cycle[J]. Applied Thermal Engineering, 2021, 187:116528.
[39] KAWAKATSU T, UEDA A. A molecular dynamics study of relaxation processes at a detonation wave front[J]. Journal of the Physical Society of Japan, 1988, 57(9):2955-2965.
[40] BRENNER D W, ROBERTSON D H, ELERT M L, et al. Detonations at nanometer resolution using molecular dynamics[J]. Physical Review Letters, 1993, 70(14):2174-2177.
[41] LIU H, ZHANG Y, KANG W, et al. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons[J]. Physical Review E, 2017, 95(2-1):023201.
[42] KOLERA-GOKULA H, ECHEKKI T. Direct numerical simulation of premixed flame kernel-vortex interactions in hydrogen-air mixtures[J]. Combustion and Flame, 2006, 146(1-2):155-167.
[43] ROMICK C M, ASLAM T D, POWERS J M. The effect of diffusion on the dynamics of unsteady detonations[J]. Journal of Fluid Mechanics, 2012, 699:453-464.
[44] SUCCI S. The lattice Boltzmann equation:For fluid dynamics and beyond[M]. New York:Princeton University Press, 2001.
[45] SUCCI S, BELLA G, PAPETTI F. Lattice kinetic theory for numerical combustion[J]. Journal of Scientific Computing, 1997, 12(4):395-408.
[46] FILIPPOVA O, HAENEL D. A novel numerical scheme for reactive flows at low Mach numbers[J]. Computer Physics Communications, 2000, 129(1-3):267-274.
[47] CHIAVAZZO E, KARLIN I V, GORBAN A N, et al. Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations[J]. Combustion and Flame, 2010, 157(10):1833-1849.
[48] CHEN S, MI J C, LIU H, et al. First and second thermodynamic-law analyses of hydrogen-air counter-flow diffusion combustion in various combustion modes[J]. International Journal of Hydrogen Energy, 2012, 37(6):5234-5245.
[49] PAN Y Y, KONG S C. Simulation of biomass particle evolution under pyrolysis conditions using lattice Boltzmann method[J]. Combustion and Flame, 2017, 178:21-34.
[50] FENG Y L, TAYYAB M, BOIVIN P. A Lattice-Boltzmann model for low-Mach reactive flows[J]. Combustion and Flame, 2018, 196:249-254.
[51] LIU Y Z, XIA J, WAN K D, et al. Simulation of char-pellet combustion and sodium release inside porous char using lattice Boltzmann method[J]. Combustion and Flame, 2020, 211:325-336.
[52] TAYYAB M, RADISSON B, ALMARCHA C, et al. Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[J]. Combustion and Flame, 2020, 221:103-109.
[53] TAYYAB M, ZHAO S, FENG Y, et al. Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[J]. Combustion and Flame, 2020, 211:173-184.
[54] XU A G, ZHANG G C, GAN Y B, et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Frontiers of Physics, 2012, 7(5):582-600.
[55] XU A G, LIN C D, ZHANG G C, et al. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion[J]. Physical Review E, 2015, 91(4):043306.
[56] 许爱国, 张广财, 应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展[J]. 物理学报, 2015, 64(18):184701. XU A G, ZHANG G C, YING Y J. Progess of discrete Boltzmann modeling and simulation of combustion system[J]. Acta Physica Sinica, 2015, 64(18):184701(in Chinese).
[57] XU A G, ZHANG G C, ZHANG Y D. Discrete Boltzmann modeling of compressible flows[M]//KYZAS G Z, MITROPOULOS A C. Kinetic Theory. London:IntechOpen, 2018:5-24.
[58] 许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3):138-169. XU A G, CHEN J, SONG J H, et al. Progress of discrete Boltzmann study on multiphase complex flows[J]. Acta Aerodynamica Sinica, 2021, 39(3):138-169(in Chinese).
[59] 许爱国, 宋家辉, 陈锋, 等. 基于相空间的复杂物理场建模与分析方法[J/OL]. 计算物理, (2021-05-25)[2021-06-30]. https://kns.cnki.net/kcms/detail/11.2011.O4.20210524.1535.002.html. XU A G, SONG J H, CHEN F, et al. Modeling and analysis methods for complex fields based on phase space[J/OL]. Chinese Journal of Computational Physics, (2021-05-25)[2021-06-30]. https://kns.cnki.net/kcms/detail/11.2011.O4.20210524.1535.002.html (in Chinese).
[60] XU A G, ZHANG G C, LI H, et al. Temperature pattern dynamics in shocked porous materials[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(8):1466-1474.
[61] MCNAMARA G, ZANETTI G. Use of the Boltzmann equation to simulate lattice gas automata[J]. Physical Review Letters, 1988, 61(20):2332-2335.
[62] LEE T D, YANG C N. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model[J]. Physical Review, 1952, 87(3):410-419.
[63] 许爱国, 张广财, 李英骏, 等. 非平衡与多相复杂系统模拟研究:Lattice Boltzmann动理学理论与应用[J]. 物理学进展, 2014, 34(3):136-167. XU A G, ZHANG G C, LI Y J, et al. Modeling and simulation of nonequilibrium and multiphase complex systems-Lattice Boltzmann kinetic theory and application[J]. Progress in Physics, 2014, 34(3):136-167(in Chinese).
[64] LIN C D, XU A G, ZHANG G C, et al. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows[J]. Physical Review E, 2017, 96(5):053305.
[65] XU A G, ZHANG G C, YING Y J, et al. Complex fields in heterogeneous materials under shock:Modeling, simulation and analysis[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(5):1-49.
[66] XUE K, SHI X L, ZENG J S, et al. Explosion-driven interfacial instabilities of granular media[J]. Physics of Fluids, 2020, 32(8):084104.
[67] 刘澜, 薛琨, 史晓亮, 等.一种准二维柱面爆炸波加载装置的设计与验证[J/OL].气体物理,(2021-05-28)[2021-07-01]. https://doi.org/10.19527/j.cnki.2096-1642.0887. LIU L, XUE K, SHI X L, et al. Design and verification of a quasi-two-dimensional shock wave loading device[J/OL]. Physics of Gases,(2021-05-28)[2021-07-01]. https://doi.org/10.19527/j.cnki.2096-1642.0887 (in Chinese).
[68] 杨理, 岳连捷, 张新宇. 斜爆轰波的波角和法向速度-曲率关系初探[J]. 航空学报, 2020, 41(11):123701. YANG L, YUE L J, ZHANG X Y. Preliminary study on wave angle and normal velocity-curvature relation of oblique detonation wave[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):123701(in Chinese).
[69] 孟宇, 顾洪斌, 张新宇. 微波对超声速燃烧火焰结构的影响[J]. 航空学报, 2019, 40(12):123224. MENG Y, GU H B, ZHANG X Y. Influence of microwave on structure of supersonic combustion flame[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):123224(in Chinese).
[70] LIN C D, XU A G, ZHANG G C, et al. Polar coordinate lattice Boltzmann kinetic modeling of detonation phenomena[J]. Communications in Theoretical Physics, 2014, 62(5):737-748.
[71] XU A G, ZHANG G C, ZHANG Y D, et al. Discrete Boltzmann model for implosion- and explosion-related compressible flow with spherical symmetry[J]. Frontiers of Physics, 2018, 13(5):135102.
[72] LIN C D, XU A G, ZHANG G C, et al. Double-distribution-function discrete Boltzmann model for combustion[J]. Combustion and Flame, 2016, 164:137-151.
[73] LIN C D, LUO K H, FEI L L, et al. A multi-component discrete Boltzmann model for nonequilibrium reactive flows[J]. Scientific Reports, 2017, 7(1):14580.
[74] LIN C D, LUO K H. MRT discrete Boltzmann method for compressible exothermic reactive flows[J]. Computers & Fluids, 2018, 166:176-183.
[75] LIN C D, LUO K H. Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method[J]. Combustion and Flame, 2018, 198:356-362.
[76] ZHANG Y D, XU A G, ZHANG G C, et al. A one-dimensional discrete Boltzmann model for detonation and an abnormal detonation phenomenon[J]. Communications in Theoretical Physics, 2019, 71(1):117.
[77] LIN C D, LUO K H. Kinetic simulation of unsteady detonation with thermodynamic nonequilibrium effects[J]. Combustion, Explosion, and Shock Waves, 2020, 56(4):435-443.
[78] NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics[J]. Combustion Theory and Modelling, 2005, 9(3):385-401.
[79] LIN C D, SU X L, ZHANG Y D. Hydrodynamic and thermodynamic nonequilibrium effects around shock waves:Based on a discrete boltzmann method[J]. Entropy, 2020, 22(12):1397.
[80] JI Y, LIN C D, LUO K H. Three-dimensional multiple-relaxation-time discrete Boltzmann model of compressible reactive flows with nonequilibrium effects[J]. AIP Advances, 2021, 11(4):045217.
[81] 许爱国, 张广财, 甘延标. 相分离过程的离散Boltzmann方法研究进展[J]. 力学与实践, 2016, 38(4):361-374. XU A G, ZHANG G C, GAN Y B. Progress in studies on discrete Boltzmann modeling of phase separation process[J]. Mechanics in Engineering, 2016, 38(4):361-374(in Chinese).
[82] GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann modeling of multiphase flows:Hydrodynamic and thermodynamic non-equilibrium effects[J]. Soft Matter, 2015, 11(26):5336-5345.
[83] GAN Y B, XU A G, ZHANG G C, et al. Lattice BGK kinetic model for high-speed compressible flows:Hydrodynamic and nonequilibrium behaviors[J]. EPL (Europhysics Letters), 2013, 103(2):24003.
[84] ZHANG Y D, XU A G, QIU J J, et al. Kinetic modeling of multiphase flow based on simplified Enskog equation[J]. Frontiers of Physics, 2020, 15(6):62503.
[85] LI D M, LAI H L, XU A G, et al. Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows[J]. Acta Physica Sinica, 2018, 67(8):080501.
[86] CHEN F, XU A G, ZHANG Y D, et al. Morphological and non-equilibrium analysis of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability[J]. Physics of Fluids, 2020, 32(10):104111.
[87] YE H Y, LAI H L, LI D M, et al. Knudsen number effects on two-dimensional Rayleigh-Taylor instability in compressible fluid:Based on a discrete Boltzmann method[J]. Entropy, 2020, 22(5):500.
[88] ZHANG D J, XU A G, ZHANG Y D, et al. Two-fluid discrete Boltzmann model for compressible flows:Based on ellipsoidal statistical Bhatnagar-Gross-Krook[J]. Physics of Fluids, 2020, 32(12):126110.
[89] ZHANG G, XU A G, ZHANG D J, et al. Delineation of the flow and mixing induced by Rayleigh-Taylor instability through tracers[J]. Physics of Fluids, 2021, 33(7):076105.
[90] CHEN L, LAI H L, LIN C D, et al. Specific heat ratio effects of compressible Rayleigh-Taylor instability studied by discrete Boltzmann method[J]. Frontiers of Physics, 2021, 16(5):1-12.
文章导航

/