材料工程与机械制造

石墨多孔介质气体轴承研究综述

  • 丁水汀 ,
  • 张向波 ,
  • 杜发荣 ,
  • 姬芬竹 ,
  • 周煜
展开
  • 1. 北京航空航天大学 航空发动机研究院, 北京 100191;
    2. 北京航空航天大学 能源与动力工程学院, 北京 100191;
    3. 北京航空航天大学 交通科学与工程学院, 北京 100191

收稿日期: 2021-04-09

  修回日期: 2021-04-25

  网络出版日期: 2021-08-03

基金资助

国家自然科学基金(51775025,51175018);中国汽车产业创新发展联合基金(U1664257);国家重点研发计划(2017YFB0102102,2018YFB0104100)

A review of studies on carbon-graphite porous gas bearings

  • DING Shuiting ,
  • ZHANG Xiangbo ,
  • DU Farong ,
  • JI Fenzhu ,
  • ZHOU Yu
Expand
  • 1. Research Institute of Aero-Engine, Beihang University, Beijing 100191, China;
    2. School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
    3. School of Transportation Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2021-04-09

  Revised date: 2021-04-25

  Online published: 2021-08-03

Supported by

National Natural Science Foundation of China (51775025, 51175018);China Automobile Industry Innovation and Development Joint Fund(U1664257);National Key Research and Development Plan (2017YFB0102102, 2018YFB0104100)

摘要

多孔介质气体轴承能够产生均匀的气膜压力,支撑转子系统。其具有摩擦损失小、良好的刚度和阻尼特性等优点,在旋转机械中具有良好的应用前景。在对国内外石墨多孔介质气体轴承重要发展历程及特点进行综述的基础上,阐明径向、止推、可倾瓦、局部多孔介质4种多孔介质气体轴承的结构特征和应用前景。在理论基础、静态特性、动态特性、转子系统及相关的试验方面,讨论了径向多孔介质气体轴承关键技术的研究现状及进展。剖析了多孔介质气体轴承材料和制备工艺的发展趋势,指出了多孔介质气体轴承的未来发展方向,包括理论模型中耦合速度滑移边界条件,结构上采用双层多孔介质以及先进的检测和试验技术。为多孔介质气体轴承的产业化发展提供了技术支持。

本文引用格式

丁水汀 , 张向波 , 杜发荣 , 姬芬竹 , 周煜 . 石墨多孔介质气体轴承研究综述[J]. 航空学报, 2022 , 43(10) : 525655 -525655 . DOI: 10.7527/S1000-6893.2021.25655

Abstract

The porous gas bearings can generate uniform gas pressure, support the rotor system, and have the advantages of low friction loss, great stiffness and damping characteristics, so it possesses proactive applications in rotating machinery. The key development history and characteristics of carbon-graphite porous gas bearings at home and abroad are reviewed. The structure and application characteristics of four types of porous gas bearings, radial, thrust, tilting pad, and partial porous media, are introduced. In terms of theoretical basis, static characteristics, dynamic characteristics, rotor system, and related tests, the research status and progress of key technologies of the radial porous gas bearing are discussed. The development trend of porous gas bearing materials and preparation technology is analyzed, and the future direction of porous gas bearing is pointed out, including the theoretical model coupled with velocity slip boundary conditions, the employ of double-layer porous media in the structure, and advanced detection and test technology. This paper provides technical support for the industrialization development of porous gas bearing.

参考文献

[1] ZAPOROZHETS O, ISAIENKO V, SYNYLO K. Trends on current and forecasted aircraft hybrid electric architectures and their impact on environment[J]. Energy, 2020, 211(11):8814.
[2] GIMELLI A, SANNINO R. Thermodynamic model validation of Capstone C30 micro gas turbine[J]. Energy Procedia, 2017, 126:955-962.
[3] BENINI E. Progress in gas turbine performance[M]. 2013:107-141.
[4] LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery:a review[J]. Mechanical Systems and Signal Processing, 2018, 108:33-47.
[5] HENAO N C, LORA E E S, MAYA D M Y, et al. Technical feasibility study of 200 kW gas microturbine coupled to a dual fluidized bed gasifier[J]. Biomass and Bioenergy, 2019, 130(11):105369.
[6] MAJUMDAR B C, KUMAR A. Analysis of two-layered gas-lubricated porous bearings[J]. International Journal of Applied Mechanics and Engineering, 2002, 7(2):653-664.
[7] MAJUMDER M C, MAJUMDAR B C. Theoretical analysis of pneumatic instability of externally pressurized porous gas journal bearings considering velocity slip[J]. Journal of Tribology, 1988, 110(4):730-733.
[8] BÖHLE M. Numerical investigation of the flow in hydrostatic journal bearings with porous material[C]//Fluids Engineering Division Summer Meeting, 2018:V003T12A025.
[9] KWAN Y B P, CORBETT J. Porous aerostatic bearings-an updated review[J]. Wear, 1998, 222(2):69-73.
[10] HESHMAT H, WALTON J F II. Starved hydrodynamic gas foil bearings-experiment, micromechanical phenomenon, and hypotheses[J]. Journal of Tribology, 2016, 138(4):041703.
[11] HUNSBERGER A, WALTON J F, HESHMAT H. Debris tolerant compliant foil bearings for high-speed turbomachines[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition, 2015.
[12] HESHMAT H, WALTON J F, HUNSBERGER A. Oil free 8 kW high-speed and high specific power turbogenerator[C]//Proceedings of ASME Turbo Expo 2014:Turbine Technical Conference and Exposition, 2014.
[13] ZHAO X W, XIAO S H. A three-dimensional model of gas foil bearings and the effect of misalignment on the static performance of the first and second generation foil bearings[J]. Tribology International, 2021, 156(4):106821.
[14] SNECK H J. A survey of gas-lubricated porous bearings[J]. Journal of Lubrication Technology, 1968, 90(4):804-809.
[15] 顾延东. 多孔质气体径向轴承静动特性研究及优化设计方法[D]. 镇江:江苏大学, 2019:101-120. GU Y D. Investigation on the static and dynamic characteristics and optimization design of aerostatic radial bearing with porous restrictor[D]. Zhenjiang:Jiangsu University, 2019:101-120 (in Chinese).
[16] GUHA S K, RAO N S, MAJUMDAR B C. Study of conical whirl instability of self-acting porous gas journal bearings considering tangential velocity slip[J]. Journal of Tribology, 1988, 110(1):139-143.
[17] YOSHIMOTO S, KOHNO K. Static and dynamic characteristics of aerostatic circular porous thrust bearings (effect of the shape of the air supply area)[J]. Journal of Tribology, 2001, 123(3):501-508.
[18] SCHIMPF A, GU Y, BÖHLE M. Analysis of flow models for aerostatic thrust bearings with porous material[J]. Journal of Mechanics Engineering and Automation, 2020, 10(6):181-188.
[19] HOU Y R, QIN Y. On the solution of coupled Stokes/Darcy model with Beavers-Joseph interface condition[J]. Computers & Mathematics with Applications, 2019, 77(1):50-65.
[20] KUMAR M P, DE S, SAMANTA P, et al. A comprehensive numerical model for double-layered porous air journal bearing at higher bearing numbers[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2018, 232(5):592-606.
[21] MCKAY G. The beavers and Joseph condition for velocity slip at the surface of a porous medium continuum[M]. Berlin:Springer Berlin Heidelberg, 2001:126-139.
[22] 伍奕桦. 多孔质可倾瓦轴承支承转子系统动力学分析及其实验研究[D]. 长沙:湖南大学, 2019:56-66. WU Y H. Theoretical analysis and experimental investigation on rotordynamic performance of a rigid rotor supported on porous tiliting pad bearings[D]. Changsha:Hunan University, 2019:56-66 (in Chinese).
[23] WU Y H, FENG K, ZHANG Y, et al. Nonlinear dynamic analysis of a rotor-bearing system with porous tilting pad bearing support[J]. Nonlinear Dynamics, 2018, 94(2):1391-1408.
[24] SAN A L, YANG J, DEVITT A. On tilting pad carbon-graphite porous journal bearings:measurements of imbalance response and comparison to predictions of bearing performance and system dynamic response[J/OL]. Tribology Transactions, (2021-02-10)[2021-6-1]. https://www.tandfonline.com/doi/full/10.1080/10402004.2021.1875091.
[25] 于雪梅. 局部多孔质气体静压轴承关键技术的研究[D]. 哈尔滨:哈尔滨工业大学, 2007:20-30. YU X M. Research on key technologies of partial porous externally pressurized gas bearing[D]. Harbin:Harbin Institute of Technology, 2007:20-30 (in Chinese).
[26] 饶河清. 基于FLUENT软件的多孔质静压轴承的仿真与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2006:24-50. RAO H Q. Simulation based in Fluent and experimental research of porous aeroatatic bearing[D]. Harbin:Harbin Institute of Technology, 2006:24-50 (in Chinese).
[27] MALLISETTY P K, SAMANTA P, MURMU N C. Nonlinear transient analysis of rigid rotor mounted on externally pressurized double-layered porous gas journal bearings accounting velocity slip[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(10):1-12.
[28] LENTINI L, MORADI M, COLOMBO F. A historical review of gas lubrication:from Reynolds to active compensations[J]. Tribology in Industry, 2018, 40(2):165-182.
[29] BHATTACHARJEE B, CHAKRABORTI P, CHOUDHURI K. Theoretical analysis of single-layered porous short journal bearing under the lubrication of micropolar fluid[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(9):1-9.
[30] MOKADAM R G. Thermodynamic analysis of the darcy law[J]. Journal of Applied Mechanics, 1961, 28(2):208-212.
[31] SU J C T, YOU H I, LAI J X. Numerical analysis on externally pressurized high-speed gas-lubricated porous journal bearings[J]. Industrial Lubrication and Tribology, 2003, 55(5):244-250.
[32] 占国清. 多孔质气体静压轴承高置信度数值模拟方法研究[D]. 成都:电子科技大学, 2018:34-44. ZHAN G Q. Research on high confidence of numerical simulation method for porous aerostatic bearings[D]. Chengdu:University of Electronic Science and Technology of China, 2018:34-44 (in Chinese).
[33] BEAVERS G S, JOSEPH D D. Boundary conditions at a naturally permeable wall[J]. Journal of Fluid Mechanics, 1967, 30(1):197-207.
[34] HSING F C. The effect of fluid inertia on a porous thrust plate-an analytical solution[J]. Journal of Lubrication Technology, 1971, 93(1):202-206.
[35] SUN D C. Analysis of the steady state characteristics of gas-lubricated, porous journal bearings[J]. Journal of Lubrication Technology, 1975, 97(1):44-51.
[36] LI Y, DUAN F H. Interference torque of a three-floated gyroscope with gas-lubricated bearings subject to a sudden change of the specific force[J]. Chinese Journal of Aeronautics, 2019, 32(3):737-747.
[37] 卢诗毅. 多孔质气浮主轴设计及其稳定性分析[D]. 广州:广东工业大学, 2017:67-90. LU S Y. Design and stability analysis of porous aerostatic spindle[D]. Guangzhou:Guangdong University of Technology, 2017:67-90(in Chinese).
[38] PRAKASH J, GURURAJAN K. Effect of velocity slip in an infinitely long rough porous journal bearing[J]. Tribology Transactions, 1999, 42(3):661-667.
[39] WANG C C, LEE T E. Nonlinear dynamic analysis of bi-directional porous aero-thrust bearing systems[J]. Advances in Mechanical Engineering, 2017, 9(12):1-2.
[40] 张卫艳, 林彬, 张晓峰. 多孔质气体静压径向轴承的Fluent仿真与实验研究[J]. 润滑与密封, 2018, 43(3):23-30. ZHANG W Y, LIN S, ZHANG X F. Fluent simulation and experimental study of porous aerostatic joumal bearing[J]. Lubrication Engineering, 2018:43(3):23-30 (in Chinese).
[41] NADUVINAMANI N B, HIREMATH P S, GURUBASAVARAJ G. Surface roughness effects in a short porous journal bearing with a couple stress fluid[J]. Fluid Dynamics Research, 2002, 31(5-6):333-354.
[42] SOME S, GUHA S K. Non-linear stability analysis of two-layered porous journal bearings with velocity slip and percolation effect of additives of coupled-stress lubricant[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2021, 235(1):46-60.
[43] LI W J, WANG S J, ZHAO Z L, et al. Numerical and experimental investigation on the performance of hybrid porous gas journal bearings[J]. Lubrication Science, 2021, 33(2):60-78.
[44] ZHANG G T, TONG B H, YIN Y G. Temperature distribution and heat generating/transfer mechanism of the circular bilayer porous bearing for thermo-hydrodynamic problem[J]. International Journal of Heat and Mass Transfer, 2020, 149:119134.
[45] WU Y H, DENG M W, FENG K, et al. Investigations on the nonlinear dynamic characteristics of a rotor supported by porous tilting pad bearings[J]. Nonlinear Dynamics, 2020, 100(3):2265-2286.
[46] MURTI P R K. Analysis of externally pressurized gas porous bearings[J]. Journal of Lubrication Technology, 1974, 96(3):354-360.
[47] CUI H L, WANG Y, YUE X B, et al. Effects of manufacturing errors on the static characteristics of aerostatic journal bearings with porous restrictor[J]. Tribology International, 2017, 115:246-260.
[48] KUMAR A, RAO N S. Turbulent hybrid journal bearings with porous bush:a steady state performance[J]. Wear, 1992, 154(1):23-35.
[49] PLANTE J S, VOGAN J, EL-AGUIZY T, et al. A design model for circular porous air bearings using the 1D generalized flow method[J]. Precision Engineering, 2005, 29(3):336-346.
[50] OIWA N, MASUDA M, HIRAYAMA T, et al. Deformation and flying height orbit of glass sheets on aerostatic porous bearing guides[J]. Tribology International, 2012, 48(4):2-7.
[51] OTSU Y, MIYATAKE M, YOSHIMOTO S. Dynamic characteristics of aerostatic porous journal bearings with a surface-restricted layer[J]. Journal of Tribology, 2011, 133(1):011701.
[52] FLEMING D P, THAYER W J, CUNNINGHAM R E. Dynamic stiffness and damping of externally pressurized gas lubricated journal bearings[J]. Journal of Lubrication Technology, 1977, 99(1):101-105.
[53] HELLER S, SHAPIRO W, DECKER O. A porous hydrostatic gas bearing for use in miniature turbomachinery[J]. ASLE Transactions, 1971, 14(2):144-155.
[54] JANG G H, KIM Y J. Calculation of dynamic coefficients in a hydrodynamic bearing considering five degrees of freedom for a general rotor-bearing system[J]. Journal of Tribology, 1999, 121(3):499-505.
[55] WANG C C. Nonlinear dynamic behavior and bifurcation analysis of a rigid rotor supported by a relatively short externally pressurized porous gas journal bearing system[J]. Acta Mechanica, 2006, 183(1-2):41-60.
[56] WANG C C, LO C Y, CHEN C K. Nonlinear dynamic analysis of a flexible rotor supported by externally pressurized porous gas journal bearings[J]. Journal of Tribology, 2002, 124(3):553-561.
[57] 印兆宇. 多孔质气体轴承主轴动态特性分析[D]. 南京:东南大学, 2014:30-40. YIN Z Y. Dynamic characteristics analysis of the spindle with porous gas bearings[D]. Nanjing:Southeast University, 2014:78-90 (in Chinese).
[58] CASTELLI V P. Experimental and theoretical analysis of the gas-lubricated porous rotating journal bearing[J]. ASLE Transactions, 1979, 22(4):382-388.
[59] CHANG-JIAN C W, CHEN C K. Chaotic response and bifurcation analysis of a flexible rotor supported by porous and non-porous bearings with nonlinear suspension[J]. Nonlinear Analysis:Real World Applications, 2009, 10(2):1114-1138.
[60] PANZERA T H, RUBIO J C, BOWEN C R, et al. Microstructural design of materials for aerostatic bearings[J]. Cement and Concrete Composites, 2008, 30(7):649-660.
[61] DURAZO-CARDENAS I S, CORBETT J, STEPHENSON D J. Permeability and dynamic elastic moduli of controlled porosity ultra-precision aerostatic structures[J]. Ceramics International, 2014, 40(2):3041-3051.
[62] 崔海龙. 多孔质气体静压轴承动态特性影响机理研究[D]. 北京:中国工程物理研究院, 2018:5-15. CUI H L. Study on the influence mechanism of the dynamic characteristics of porous aerostatic bearings[D]. Beijing:China Academy of Engineering Physics, 2018:5-15 (in Chinese).
[63] 赵睿. 多孔质气体静压轴承材料三维重构研究及其内流场分析[D]. 成都:电子科技大学, 2019:30-43. ZHAO R. Research on 3D reconstruction of porous aerostatic bearing material and analysis internal flow field[D]. Chengdu:University of Electronic Science and Technology of China, 2019:30-43 (in Chinese).
[64] ZHU S Y, CHENG J, QIAO Z H, et al. High temperature solid-lubricating materials:a review[J]. Tribology International, 2019, 133(5):206-23.
[65] GROSS W A. Gas bearings:A survey[J]. Wear, 1963, 6(6):423-43.
[66] SAMANTA P, MURMU N C, KHONSARI M M. The evolution of foil bearing technology[J]. Tribology International, 2019, 135:305-323.
[67] AGRAWAL G L. Foil air/gas bearing technology-an overview[C]//Proceedings of ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, 2014
[68] HESHMAT H, WALTON II J F, NICHOLSON B D. Ultra-high temperature compliant foil bearings-the journey to 870℃ and application in gas turbine engines:experiment[C]//Proceedings of ASME Turbo Expo 2018:Turbine Technical Conference and Exposition, 2018
[69] 易家明, 徐学兰. 多孔质静压气体轴承材料的研究[J]. 轴承, 1985, 62(1):36-37. YI J M, XU X L, Research on the material of porous aerostatic bearing[J]. Bearings, 1985, 62(1):36-37 (in Chinese).
[70] LEE C C, YOU H I. Geometrical design considerations on externally pressurized porous gas bearings[J]. Tribology Transactions, 2010, 53(3):386-391.
[71] LEE C C, YOU H I. Characteristics of externally pressurized porous gas bearings considering structure permeability[J]. Tribology Transactions, 2009, 52(6):768-776.
[72] CUI H L, WANG Y, YUE X B, et al. Numerical analysis of the dynamic performance of aerostatic thrust bearings with different restrictors[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2019, 233(3):406-423.
[73] IRMAY S. On the theoretical derivation of Darcy and Forchheimer formulas[J]. Transactions of American Geophysical Union, 1958, 39(4):702.
[74] COLLINS R E. Flow of fluids through porous materials[M]. 1961:22-25.
[75] BHATTACHARJEE B, CHAKRABORTI P, CHOUDHURI D. Influence of the gas lubrication on double layered porous journal bearing[C]//An International Conference on Tribology, TRIBOINDIA-2018, 2018:30-34.
[76] SAN ANDRÉS L, JEUNG S-H, ROHMER M, et al. Experimental assessment of drag and rotordynamic response for a porous type gas bearing[C]//Proceedings of the 2015 STLE Annual Meeting & Exhibition, 2015:17-21.
[77] MIYATAKE M, YOSHIMOTO S, SATO J. Whirling instability of a rotor supported by aerostatic porous journal bearings with a surface-restricted layer[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2006, 220(2):95-103.
[78] 霍彩娇. 多孔质静动压混合气体轴承特性理论与实验研究[D]. 长沙:湖南大学, 2017:86-90. HUO C J. The theroretical and experiment study of hybrid porous journal gas bearing[D]. Changsha:Hunan University, 2017:86-90 (in Chinese).
[79] LIU W H, FENG K, HUO Y W, et al. Measurements of the rotordynamic response of a rotor supported on porous type gas bearing[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(10):102501.
[80] VOLFKOVICH Y M, FILIPPOV A N, BAGOTSKY V S. Structural properties of porous materials and powders used in different fields of science and technology[M]. London:Springer, 2014:32-40.
[81] HAMDAN M A, AL-ASSAF A H, AL-NIMR M A. The effect of slip velocity and temperature jump on the hydrodynamic and thermal behaviors of MHD forced convection flows in horizontal microchannels[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2016, 40(2):95-103.
[82] AKBARI M, GHASEMI M. A novel kinetic-based slip velocity boundary condition suitable for compressible gas flows in micro-/nanochannels[J]. Acta Mechanica, 2018, 229(11):4471-4484.
[83] ZHANG X B, DING S T, DU F R, et al. Investigation into gas lubrication performance of porous gas bearing considering velocity slip boundary condition[J/OL]. Friction,(2021-6-5)[2021-6-20]. https://doi.org/10.1007/s40544-021-0503-7.
[84] SOME S, GUHA S K. Linear stability analysis of double-layered porous journal bearings under coupled-stress lubrication with slip flow and percolation effect of additives[J]. Industrial Lubrication and Tribology, 2019, 71(3):447-458.
[85] RAO T V V L N, RANI A M A, AWANG M, et al. Stability analysis of double porous and surface porous layer journal bearing[J]. Tribology-Materials, Surfaces & Interfaces, 2016, 10(1):19-25.
[86] 霍彦伟. 多孔质静压气体轴承的温度特性及转子动力学实验研究[D]. 长沙:湖南大学, 2017:70-90. HUO Y W. Thermal characteristic analysisi and rotordynamic experimental study of aerostatic porous journal bearings[D]. Changsha:Hunan University, 2017:70-90 (in Chinese).
[87] ZHANG D Y, GAO B, HONG J, et al. Experimental investigation on dynamic response of flat blades with underplatform dampers[J]. Chinese Journal of Aeronautics, 2019, 32(12):2667-2678.
[88] SAHA N, MAJUMDAR B C. Study of externally-pressurized gas-lubricated two-layered porous journal bearings:a steady state analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2002, 216(3):151-158.
[89] 王继尧, 龙威, 吴蜜蜜, 等. 载荷分布对空气静压轴承振动特性的实验[J]. 航空学报, 2020, 41(8):223679. WANG J Y, LONG W, WU M M, et al. Experiment of load distribution on micro-vibration characteristics of aerostatic bearings[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):223679(in Chinese).
[90] 邢航. 自润滑轴承检测台控制系统的设计与研究[D]. 哈尔滨:哈尔滨理工大学, 2015:78-90. XING H. Design and research of control system of self-lubricating bearing test bench[D]. Harbin:Harbin University of Science and Technology, 2015:78-90 (in Chinese).
[91] XU Z, JI F Z, DING S T, et al. Effect of scavenge port angles on flow distribution and performance of swirl-loop scavenging in 2-stroke aircraft diesel engine[J]. Chinese Journal of Aeronautics, 2021, 34(3):105-117.
[92] 王京锋, 刘景林, 许卫刚. 动压气体轴承陀螺电机技术发展综述[J]. 微电机, 2016, 49(3):90-94. WANG J F, LIU J L, XU W G. Development and application of technology of dynamic hydrodynamic gas bearing gyroscope motor[J]. Micromotors, 2016, 49(3):90-94 (in Chinese).
[93] ZHOU Y, SHAO L T, ZHANG C, et al. Numerical and experimental investigation on dynamic performance of bump foil journal bearing based on journal orbit[J]. Chinese Journal of Aeronautics, 2021, 34(2):586-600.
文章导航

/