航空发动机运行安全专栏

转频调制下齿轮泵压力脉动机理

  • 许文纲 ,
  • 王志颖 ,
  • 孙闯 ,
  • 严如强 ,
  • 陈雪峰
展开
  • 西安交通大学 机械工程学院, 西安 710049

收稿日期: 2021-03-16

  修回日期: 2021-05-06

  网络出版日期: 2021-08-03

基金资助

国家重点研发计划(2018YFB1702400);国家自然科学基金(51835009);陕西省自然科学基础研究计划(2020JQ-042)

Pressure pulsation mechanism of gear pump with frequency modulation

  • XU Wengang ,
  • WANG Zhiying ,
  • SUN Chuang ,
  • YAN Ruqiang ,
  • CHEN Xuefeng
Expand
  • School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2021-03-16

  Revised date: 2021-05-06

  Online published: 2021-08-03

Supported by

National Key Research and Development Program of China (2018YFB1702400); National Natural Science Foundation of China (51835009); Natural Science Basic Research Plan in Shaanxi Province (2020JQ-042)

摘要

齿轮泵作为一种主要的燃油泵, 是航空发动机燃油系统的核心部件, 其工作特性直接影响着发动机的整机性能, 为了解决齿轮泵压力脉动机理不明确的问题, 对齿轮泵压力脉动进行动力学建模研究。首先, 运用欧拉法建立了齿轮泵单齿啮合过程压力脉动的动力学模型, 分析了单齿啮合过程中压力脉动的变化规律, 通过比较齿轮泵出口压力脉动仿真数据和实验数据来验证模型的正确性。其次, 齿轮泵出口流体作湍流流动, 根据齿轮泵的周期性运动分析了出口测量点处的压力脉动模型, 讨论了转频对压力脉动信号的调制作用。最后, 讨论了不同工况条件对压力脉动的影响, 随着工作负载的增大, 压力脉动频率不变, 脉动幅值增大;随着转速的提高, 压力脉动的频率增大, 脉动幅值减小。

本文引用格式

许文纲 , 王志颖 , 孙闯 , 严如强 , 陈雪峰 . 转频调制下齿轮泵压力脉动机理[J]. 航空学报, 2022 , 43(9) : 625508 -625508 . DOI: 10.7527/S1000-6893.2021.25508

Abstract

Gear pump, as a main fuel pump, is a core component of aero-engine fuel system. Its safety performance directly affects the performance of the whole engine. In order to solve the problem that the mechanism of pressure pulsation of gear pump is not clear, the dynamic modeling of pressure pulsation during gear meshing is studied. Firstly, the dynamic model of pressure pulsation in the process of single gear meshing of gear pump was established by Euler method, and the variation rule of pressure pulsation in the process of single tooth engagement was analyzed. The correctness of the model was verified by comparing the simulation data and experimental data of pressure pulsation at the outlet volume of gear pump. Secondly, considering that the outlet volume fluid of the gear pump is turbulent, the pressure pulsation model at the outlet measuring point is proposed according to the periodic movement of the gear pump, and the modulation effect of the frequency on the pressure pulsation signal is discussed. Finally, the influence of different working conditions on pressure pulsation is discussed. With the increase of the workload, the frequency of pressure pulsation remains unchanged, but the amplitude of pressure pulsation increases. With the increase of rotating speed, the frequency of pressure pulsation increases and the amplitude of pressure pulsation decreases.

参考文献

[1] LIU D X, CHEN G, XU T Y, et al. Aeroengine: The heart of an aircraft[M]. 2nd ed. Beijing: Aviation Industry Press, 2015: 75-86 (in Chinese). 刘大响, 陈光, 徐通源, 等. 航空发动机飞机的心脏[M]. 2版. 北京: 航空工业出版社, 2015: 75-86.
[2] LIU Y S, FENG Z Z, YU K H, et al. Influence of fuel pump failure on the fuel feeding stability of an aircraft fuel system: AIAA-2007-7826[R]. Reston: AIAA, 2007.
[3] BAI Y X, KONG F Y, HE Y Y, et al. Analysis about unsteady pressure pulsation in gear oil pump[J]. Machine Tool & Hydraulics, 2015, 43(9): 110-113 (in Chinese). 柏宇星, 孔繁余, 何玉洋, 等. 齿轮油泵非定常压力脉动分析[J]. 机床与液压, 2015, 43(9): 110-113.
[4] ZHANG X. Prediction of gear pump pressure fluctuation based on neural network[J]. Coal Mine Machinery, 2018, 39(4): 145-147 (in Chinese). 张鑫. 基于神经网络的齿轮泵压力脉动预测[J]. 煤矿机械, 2018, 39(4): 145-147.
[5] CHEN Z H, PAN W, DI W F. Fault diagnosis of gear pump based on pressure signals analyzing and features extracting[J]. Machine Tool & Hydraulics, 2007, 35(1): 237-240 (in Chinese). 陈中华, 潘伟, 狄文峰. 基于压力信号分析与特征提取的齿轮泵故障诊断[J]. 机床与液压, 2007, 35(1): 237-240.
[6] HASSAN A B B. Study and measures of reduction in external gear pump flow pulsation[D]. Changchun: Jilin University, 2013: 27-50 (in Chinese). 阿巴沙. 减小外啮合齿轮泵流量脉动的措施研究[D]. 长春: 吉林大学, 2013: 27-50.
[7] YU K Q. Flow rate pulsation analysis and optimal design of gear pump[D]. Harbin: Harbin Institute of Technology, 2006: 9-36 (in Chinese). 喻开清. 齿轮泵流量脉动分析与优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2006: 9-36.
[8] MANC S, NERVEGNA N. Simulation of an external gear pump and experimental verification[J]. Proceedings of the JFPS International Symposium on Fluid Power, 1989, 1989(1): 147-160.
[9] MUCCHI E, DALPIAZ G. Elasto-dynamic analysis of a gear pump-Part Ⅲ: Experimental validation procedure and model extension to helical gears[J]. Mechanical Systems and Signal Processing, 2015, 50-51: 174-192.
[10] MUCCHI E, DALPIAZ G, RINCÓN A F D. Elasto-dynamic analysis of a gear pump-Part IV: Improvement in the pressure distribution modelling[J]. Mechanical Systems and Signal Processing, 2015, 50-51: 193-213.
[11] TIAN H. Dynamic pressure simulation of an external gear pump with relief chamber using a morphological approach[J]. IEEE Access, 2018, 6: 77509-77518.
[12] RITURAJ F, VACCA A, MORSELLI M A. Modeling of manufacturing errors in external gear machines and experimental validation[J]. Mechanism and Machine Theory, 2019, 140: 457-478.
[13] MHANA W, POPOV G. Investigation of the pressure variation in the chambers of external gear pumps with symmetric and asymmetric tooth profiles used in electrohydraulic drive systems[C]//16th Conference on Electrical Machines, Drives and Power Systems (ELMA). Piscataway: IEEE Press, 2019: 1-4.
[14] FROSINA E, SENATORE A, RIGOSI M. Study of a high-pressure external gear pump with a computational fluid dynamic modeling approach[J]. Energies, 2017, 10(8): 1113.
[15] RITURAJ, RANSEGNOLA T, VACCA A. An investigation on the leakage flow and instantaneous tooth space pressure in external gear machines[C]//2018 Global Fluid Power Society PhD Symposium (GFPS). Piscataway: IEEE Press, 2018: 1-8.
[16] MANC S, NERVEGNA N. Pressure transients in an external gear hydraulic pump[J]. Proceedings of the JFPS International Symposium on Fluid Power, 1993, 1993(2): 221-227.
[17] CINAR R, UCAR M, CELIK H K, et al. Pressure determination approach in specific pressure regions and FEM-based stress analysis of the housing of an external gear pump[J]. Experimental Techniques, 2016, 40(2): 489-499.
[18] TAO W Q. Numerical heat transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001 (in Chinese). 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001.
[19] MUCCHI E, DALPIAZ G, FERNÀNDEZ DEL RINC N A. Elastodynamic analysis of a gear pump. Part I: Pressure distribution and gear eccentricity[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 2160-2179.
[20] ANTONIAK P, STRYCZEK J. Visualization study of the flow processes and phenomena in the external gear pump[J]. Archives of Civil and Mechanical Engineering, 2018, 18(4): 1103-1115.
[21] ZHANG Z S, CUI G X, XU C X. Theory and modeling of turbulence[M]. 2nd ed. Beijing: Tsinghua University Press, 2017: 16-55 (in Chinese). 张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 2版. 北京: 清华大学出版社, 2017: 16-55.
[22] WANG X Y. Numerical simulation of pulsating flow and heat transfer in tubes[D]. Harbin: Harbin Institute of Technology, 2007: 30-31 (in Chinese). 王希影. 圆管脉动流动与换热的数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2007: 30-31.
[23] HUTCHINS N, MARUSIC I. Large-scale influences in near-wall turbulence[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365(1852): 647-664.
[24] MATHIS R, HUTCHINS N, MARUSIC I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2009, 628: 311-337.
文章导航

/