电子电气工程与控制

消振电力作动器用位置环解耦控制策略

  • 郝振洋 ,
  • 王涛 ,
  • 曹鑫 ,
  • 朱涛
展开
  • 南京航空航天大学 自动化学院, 南京 210016

收稿日期: 2021-05-31

  修回日期: 2021-07-21

  网络出版日期: 2021-07-20

基金资助

国家自然科学基金(52077100);航空科学基金(201958052001)

Decoupling control strategy of position loop for vibration damping electric actuator

  • HAO Zhenyang ,
  • WANG Tao ,
  • CAO Xin ,
  • ZHU Tao
Expand
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2021-05-31

  Revised date: 2021-07-21

  Online published: 2021-07-20

Supported by

National Natural Science Foundation of China (52077100);Aeronautical Science Foundation of China (201958052001)

摘要

消振电力作动器采用四台电机各自独立驱动四个偏心质量块的形式实现减振,传统的并行控制策略会因为在系统输出端存在强耦合而导致控制效果不佳。针对以上问题,首先建立了作动器输出力的数学模型,提出了消振电力作动器用位置环解耦控制策略,并将广义频率法和主导极点法相结合应用于控制系统的参数设计上。然后,分析了系统的动态性能,并通过回差矩阵奇异值法等稳定裕度量测方法计算出了解耦控制系统的稳定裕度,结果表明本文所设计的系统具有良好的动态特性和鲁棒性。最后,研制出了原理样机,实验验证了控制策略的有效性和参数设计的合理性。

本文引用格式

郝振洋 , 王涛 , 曹鑫 , 朱涛 . 消振电力作动器用位置环解耦控制策略[J]. 航空学报, 2022 , 43(8) : 325884 -325884 . DOI: 10.7527/S1000-6893.2021.25884

Abstract

The anti-vibration electric actuator adopts the form of four motors independently driving four eccentric masses to achieve vibration reduction, and the traditional parallel control strategy will cause poor control effect due to strong coupling at the output end of the system. In response to the above problems, this article first established a mathematical model of the actuator output force, and proposed a decoupling control strategy of the position loop for the vibration-absorbing electric actuator. The generalized frequency method and the dominant pole method are both used in the parameter design of the control system. Then, the dynamic performance of the system is analyzed, and the stability margin of the decoupling control system is calculated by the stability margin measurement methods such as the hysteresis matrix singular value method. The results show that the system designed in this paper has good dynamic characteristics and robustness. Finally, the principle prototype is developed. The experiment verifies the effectiveness of the control strategy and the rationality of the parameter design.

参考文献

[1] 徐国华, 史勇杰, 招启军, 等. 直升机旋翼气动噪声的研究新进展[J]. 航空学报, 2017, 38(7): 520991. XU G H, SHI Y J, ZHAO Q J, et al. New research progress in helicopter rotor aerodynamic noise[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520991 (in Chinese).
[2] 向锦武, 郭俊贤, 张晓谷. 直升机减振的旋翼桨叶优化设计研究综述[J]. 北京航空航天大学学报, 2001, 27(1): 32-35. XIANG J W, GUO J X, ZHANG X G. An overview of rotor blades optimum design for helicopter vibration reduction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(1): 32-35 (in Chinese).
[3] HAO Z Y, LI X, CAO X, et al. A cross-coupled control strategy of phase difference for electric vibration damping actuator[J]. IEEE Access, 2020, 8: 213887-213898.
[4] 朱翔, 殷学吉, 李天匀, 等. 基于惯容器的动力反共振隔振器隔振特性分析[J]. 哈尔滨工程大学学报, 2016, 37(10): 1318-1322. ZHU X, YIN X J, LI T Y, et al. Analysis of the vibration isolation characteristics of dynamic anti-resonance isolators based on an inerter[J]. Journal of Harbin Engineering University, 2016, 37(10): 1318-1322 (in Chinese).
[5] 庞俊恒. 基于压电元件的振动被动控制技术研究[D].南京:南京理工大学, 2004. PANG J H. Research on passive vibration control technology based on piezoelectric elements[D]. Nanjing: Nanjing University of Science and Technology, 2004(in Chinese).
[6] 林长亮, 王金亮, 张亚军, 等. 直升机振动主动控制技术研究现状[C]//探索 创新 交流——第六届中国航空学会青年科技论坛文集(上册). 北京: 中国航空学会, 2014: 6. LIN C L, WANG J L, ZHANG Y J, et al. Research status of active helicopter vibration control technology[C]//Exploring and Innovating Exchange—Proceedings of the Sixth Chinese Society of Aeronautics and Astronautics (Volume 1). Beijing: Chinese Aeronautical Society, 2014: 6 (in Chinese).
[7] GARNJOST K D, REY G J. Modular vibratory force generator, and method of operating same: US5903077[P]. 1999-05-11.
[8] JUNG S U, KWAK D I, KIM S H, et al. Vibration reduction devices for Korean utility helicopter[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2013, 41(12): 987-993.
[9] KIM D H, KIM T J, PAEK S K, et al. Application and performance evaluation of helicopter active vibration control system for surion[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2015, 43(6): 557-567.
[10] JOLLY M R, ALTIERI R E, BADRE-ALAM A, et al. Helicopter vibration control system and circular force generation systems for canceling vibrations: US9776712[P]. 2017-10-03.
[11] 李维嘉, 曹青松. 船舶振动主动控制的研究进展与评述[J]. 中国造船, 2007, 48(2): 68-79. LI W J, CAO Q S. Advances and review on the research of the active control of ship vibration[J]. Ship Building of China, 2007, 48(2): 68-79 (in Chinese).
[12] 郝振洋, 王涛, 曹鑫, 等. 旋转偏心质量块式消振电力作动器建模与控制[J]. 振动工程学报, 2022, 35(1): 209-219. HAO Z Y, WANG T, CAO X, et al. Modeling and control of rotating eccentric mass block vibration damping electric actuator[J]. Journal of Vibration Engineering, 2022, 35(1): 209-219 (in Chinese).
[13] 韩广才, 李鸿, 王芝秋.船舶电动消振作动器研究[J].哈尔滨工程大学学报, 2005(1): 39-43. HAN G C, LI H, WANG Z Q.Research on ship’s electric vibration damping actuator[J]. Journal of Harbin Engineering University, 2005(1): 39-43(in Chinese).
[14] 宋来收,夏品奇.直升机振动主动控制的机身/压电叠层作动器耦合优化法[J].航空学报,2011,32(10):1835-1841. SONG L S, XIA P Q.The coupling optimization method of fuselage/piezoelectric laminated actuator for active control of helicopter vibration[J]. Acta Aeronautica Sinica,2011,32(10):1835-1841(in Chinese).
[15] 汪文涛, 刘正江, 李新民. 用于离心式作动器的变滑模面滑模控制[J]. 航空学报, 2019, 40(12): 323210. WANG W T, LIU Z J, LI X M. Variable sliding mode sliding mode controller for centrifugal harmonic force generator[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 323210 (in Chinese).
[16] DINCEL E, SÖYLEMEZ M T. Limitations on domin ant pole pair selection with continuous PI and PID controllers[C]//2016 International Conference on Control,Decision and Information Technologies (CoDIT), 2016: 741-745.
[17] 王鑫鑫. 基于热连轧机耦合振动的主动抑振控制研究[D]. 北京: 北京科技大学, 2019. WANG X X. Research on active vibration suppression control based on coupled vibration of hot strip mill[D]. Beijing: University of Science and Technology Beijing, 2019(in Chinese).
[18] LEHTOMAKI N, SANDELL N, ATHANS M. Robustness results in linear-quadratic Gaussian based multivariable control designs[J]. IEEE Transactions on Automatic Control, 1981, 26(1): 75-93.
[19] MUKHOPADHYAY V, NEWSOM J. Application of matrix singular value properties for evaluating gain and phase margins of multiloop systems[C]//Guidance and Control Conference. Reston: AIAA, 1982: 420-428.
[20] 袁海宵, 王慧贞. 基于无刷直流电动机伺服系统的位置环设计[J]. 电力电子技术, 2011, 45(4): 52-54, 84. YUAN H X, WANG H Z. The design of digital three loops servo system based on brushless DC motor[J]. Power Electronics, 2011, 45(4): 52-54, 84 (in Chinese).
[21] 李信栋, 苟兴宇. 多输入多输出线性定常系统稳定裕度的分析与改进[J]. 控制理论与应用, 2014, 31(1): 105-111. LI X D, GOU X Y. Analysis and improvement of stability margin for multi-input multi-output linear time-invariant systems[J]. Control Theory & Applications, 2014, 31(1): 105-111 (in Chinese).
[22] 李信栋, 苟兴宇. 由回差阵奇异值求稳定裕度的退化算法[J]. 控制理论与应用, 2016, 33(4): 460-465. LI X D, GOU X Y. Degraded algorithm for determining stability margin by using singular value of the return difference matrix[J]. Control Theory & Applications, 2016, 33(4): 460-465 (in Chinese).
文章导航

/