在全消声室进行超声速欠膨胀射流冲击实验,收缩喷口直径D为56 mm,马赫数Ma为1.23,斜板边长600 mm,冲击角度β为65°。利用远场传声器弧阵列和高频粒子图像测速(PIV),对不同冲击距离噪声和相关流动结构进行观测,其中弧阵列位于射流水平轴线侧面,远场距离64.3D,PIV采样频率足够高,可以观测到大尺度涡结构的脱落过程。粒子灰度图显示自由射流核心区大约延伸9D,非对称模态的大尺度涡结构占据统治地位。系统分析了冲击斜板距离对总声压级和湍流混合噪声、宽带激波相关噪声、激波啸叫等不同噪声成分的影响规律。其中冲击距离(L)大于核心区(L>9D),宽带激波相关噪声几乎没有变化;冲击斜板进入核心区,宽带激波相关噪声下降,冲击噪声在上游频谱占据统治地位,但后者对边线的辐射很弱,导致上游噪声增加而边线总声压级大幅降低。L>5D时射流冲击使啸叫出现微小频移,由于剪切层不稳定波无法正常向下游发展,观测到L=7D时大尺度涡结构会在非对称模态、轴对称模态和过渡模态之间切换,而L=4D时监测到更高频率的啸叫,其无量纲波长对应轴对称模态。激波啸叫幅值的定量分析表明,L>5D时冲击斜板主要影响上游啸叫强度,就边线而言,啸叫二次谐频强度的稳定性较高,但冲击斜板使边线平均声压级下降。
An experiment of supersonic under-expanded jet impingement was carried out in a full anechoic chamber, in which a jet of Mach number is 1.23 from a convergent nozzle with the diameter D of 56 mm impinged on an inclined plate with the length of 600 mm, and the impingement angle is β of 65°. Arc array of microphones and high frequency Particle Image Velocimetry (PIV) were used to observe the far-field sound and flow structure at different impact distances L, respectively. Microphones were located on the side of the horizontal axis of the jet with the far-field distance of 64.3D. The sampling frequency of PIV was high enough to capture the shedding frequency of large-scale vortex structure. The gray scale image of PIV snapshots shows that the potential flow core of the free jet extends about 9D, and the large-scale vortex structure is dominated by asymmetric mode. The effects of the impact distance of nozzle to inclined plate on the overall sound pressure level (OASPL), turbulence mixing noise, impingement noise, broadband shock-associated noise and shock screech were carefully analyzed. It is found that broadband shock-associated noise has almost no change if the impact distance is larger than that of the length of potential flow core (L > 9D). For L < 9D, the aeroacoustic results show that the broadband shock-associated noise decreases, and the radiation ability of impact noise to the side line is very weak while the impingement noise dominates the spectrum of upstream, resulting in the increase of upstream OASPL and the sharp decrease of side line OASPL. The spectrums for L > 5D indicated that the jet impingement causes a small frequency shift of screech. Due to the limitation of inclined plate, the shear layer instability wave cannot develop downstream normally. It is indicated from the flow visualization of L = 7D that the large-scale vortex structure of shear layer switches between asymmetric mode, axisymmetric mode and transition mode. A higher frequency screech is detected when L = 4D, and its dimensionless wavelength corresponds to axisymmetric mode. The quantitative analysis of the shock screech amplitude for L > 5D shows that the inclined plate mainly affects the upstream screech intensity. As for side line direction, the intensity of the second harmonic of screech is stable, while the impingement on the inclined plate reduces the average sound pressure level.
[1] SUTHERLAND L C. Progress and problems in rocket noise prediction for ground facilities[C]//15th Aeroacoustics Conference. Reston: AIAA, 1993.
[2] MCINERNY S A. Characteristics and predictions of far-field rocket noise[J]. Noise Control Engineering Journal, 1992, 38(1): 5.
[3] RAMAN G. Advances in understanding supersonic jet screech: review and perspective[J]. Progress in Aerospace Sciences, 1998, 34(1-2): 45-106.
[4] 陈修平. 月面软着陆火箭发动机推力矢量测试系统研究[D]. 大连: 大连理工大学, 2013: 1-3. CHEN X P. Research on thrust vector measurement system for a lunar soft-landing rocket motor[D]. Dalian: Dalian University of Technology, 2013: 1-3 (in Chinese).
[5] TAM C K W. Supersonic jet noise[J]. Annual Review of Fluid Mechanics, 1995, 27: 17-43.
[6] 李晓东, 徐希海, 高军辉, 等. 喷流噪声研究进展与展望[J]. 空气动力学学报, 2018, 36(3): 398-409. LI X D, XU X H, GAO J H, et al. Progress and prospect on jet noise study[J]. Acta Aerodynamica Sinica, 2018, 36(3): 398-409 (in Chinese).
[7] 张津泽, 徐珊姝, 王国辉, 等. 超声速喷流噪声研究进展[J]. 强度与环境, 2016, 43(5): 57-64. ZHANG J Z, XU S S, WANG G H, et al. Research progress of supersonic jet noise[J]. Structure & Environment Engineering, 2016, 43(5): 57-64 (in Chinese).
[8] CHU W T, KAPLAN R E. Use of a spherical concave reflector for jet-noise-source distribution diagnosis[J]. The Journal of the Acoustical Society of America, 1976, 59(6): 1268-1277.
[9] 万振华. 可压缩剪切流噪声的计算与机理研究[D]. 合肥: 中国科学技术大学, 2013: 65-89. WAN Z H. The computations and investigations of compressible shear flow noise[D]. Hefei: University of Science and Technology of China, 2013: 65-89 (in Chinese).
[10] TAM C K W, GOLEBIOWSKI M, SEINER J. On the two components of turbulent mixing noise from supersonic jets[C]//Aeroacoustics Conference. Reston: AIAA, 1996: 1716.
[11] VISWANATHAN K. Analysis of the two similarity components of turbulent mixing noise[J]. AIAA Journal, 2002, 40(9): 1735-1744.
[12] 冯峰, 郭力, 王强. 马赫数1.95超声速欠膨胀喷流声辐射数值分析[J]. 航空学报, 2016, 37(11): 3273-3283. FENG F, GUO L, WANG Q. Numerical investigation of acoustic radiation from Mach number 1.95 supersonic underexpanded jet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3273-3283 (in Chinese).
[13] POWELL A. On the mechanism of choked jet noise[J]. Proceedings of the Physical Society Section B, 1953, 66(12): 1039-1056.
[14] TAM C K W. Stochastic model theory of broadband shock associated noise from supersonic jets[J]. Journal of Sound and Vibration, 1987, 116(2): 265-302.
[15] NORUM T D. Screech suppression in supersonic jets[J]. AIAA Journal, 1983, 21(2): 235-240.
[16] UMEDA Y, ISHII R. On the sound sources of screech tones radiated from choked circular jets[J]. The Journal of the Acoustical Society of America, 2001, 110(4): 1845-1858.
[17] TAM C K W. Jet noise: since 1952[J]. Theoretical and Computational Fluid Dynamics, 1998, 10(1-4): 393-405.
[18] GUMMER J H, HUNT B L. The impingement of a uniform, axisymmetric, supersonic jet on a perpendicular flat plate[J]. Aeronautical Quarterly, 1971, 22(4): 403-420.
[19] DONALDSON C D, SNEDEKER R S. A study of free jet impingement. Part 1. Mean properties of free and impinging jets[J]. Journal of Fluid Mechanics, 1971, 45(2): 281.
[20] CARLING J C, HUNT B L. The near wall jet of a normally impinging, uniform, axisymmetric, supersonic jet[J]. Journal of Fluid Mechanics, 1974, 66(1): 159-176.
[21] MARSH A H. Noise measurements around a subsonic air jet impinging on a plane, rigid surface[J]. The Journal of the Acoustical Society of America, 1961, 33(8): 1065-1066.
[22] TAM C K W, AHUJA K K. Theoretical model of discrete tone generation by impinging jets[J]. Journal of Fluid Mechanics, 1990, 214: 67.
[23] KROTHAPALLI A, RAJKUPERAN E, ALVI F, et al. Flow field and noise characteristics of a supersonic impinging jet[C]//4th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 1998.
[24] HENDERSON B. The connection between sound production and jet structure of the supersonic impinging jet[J]. The Journal of the Acoustical Society of America, 2002, 111(2): 735-747.
[25] SINIBALDI G, MARINO L, ROMANO G P. Sound source mechanisms in under-expanded impinging jets[J]. Experiments in Fluids, 2015, 56(5): 1-14.
[26] SINIBALDI G, LACAGNINA G, MARINO L, et al. Aeroacoustics and aerodynamics of impinging supersonic jets: analysis of the screech tones[J]. Physics of Fluids, 2013, 25(8): 086104.
[27] NONOMURA T, GOTO Y, FUJII K. Acoustic waves from a supersonic jet impinging on an inclined flat plate[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
[28] TSUTSUMI S, TAKAKI R, NAKANISHI Y, et al. Acoustic generation mechanism of a supersonic jet impinging on deflectors[C]//52nd Aerospace Sciences Meeting. Reston: AIAA, 2014.
[29] AKAMINE M, NAKANISHI Y, OKAMOTO K, et al. Acoustic phenomena from correctly expanded supersonic jet impinging on inclined plate[J]. AIAA Journal, 2015, 53(7): 2061-2067.
[30] WORDEN T J, SHIH C, ALVI F S. Supersonic jet impingement on a model-scale jet blast deflector[J]. AIAA Journal, 2017, 55(8): 2522-2536.
[31] 吕亚东, 方庆川, 程明昆, 等. 声学 声压法测定噪声源声功率级和声能量级 消声室和半消声室精密法: GB/T 6882—2016[S]. 北京: 中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会, 2016. LYU Y D, FANG Q C, CHENG M K, et al. Acoustics-Determination of sound power levels and sound energy levels of noise sources using sound pressure-Precision methods for anechoic rooms and hemi-anechoic rooms: GB/T 6882—2016 [S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China & Standardization Administration of China, 2016. (in Chinese).
[32] SEINER J, MANNING J, PONTON M. Model and full scale study of twin supersonic plume resonance[C]//25th AIAA Aerospace Sciences Meeting. Reston: AIAA, 1987.
[33] MOLLO-CHRISTENSEN E, KOLPIN M A, MARTUCCELLI J R. Experiments on jet flows and jet noise far-field spectra and directivity patterns[J]. Journal of Fluid Mechanics, 1964, 18(2): 285.