基于γ-Reθt转捩模型的框架,发展了考虑流动可压缩性的γ-Reθt-fRe转捩模型。针对已有的转捩准则引入可压缩性修正,并利用基于参考温度法获得的雷诺数可压缩性比拟关系fRe修正现有基于不可压缩流动的转捩关联函数。为实现模型的局部性,构建了额外的雷诺数可压缩性比拟关系fRe输运方程。利用所发展的γ-Reθt-fRe转捩模型对不同流动条件的转捩算例进行了考核并和基本γ-Reθt转捩模型进行了对比,结果显示,γ-Reθt-fRe转捩模型实现了从低速至高速的无缝统一模拟能力。在低速流动条件下,γ-Reθt-fRe转捩模型自动恢复为基本γ-Reθt转捩模型;在超声速和高超声速流动条件下,γ-Reθt-fRe转捩模型显著改善了流动转捩的起始位置和转捩区发展的预测。
A transition model considering the compressibility of flow, which is called γ-Reθt-fRe, is developed from the original γ-Reθt transition model framework. The compressibility correction is introduced for the existing transition criteria, and the original transition correlation function based on incompressible flow is modified by using the Reynolds number compressibility analogy relation obtained by reference temperature method. In order to achieve the localization of the model, an addition-al Reynolds number compressibility analogy relation fRe transport equation is constructed. The developed γ-Reθt-fRe transition model is used to examine the transition cases under different flow conditions and compared with the basic γ-Reθt transition model. The numerical simulation results show that the γ-Reθt-fRe transition model achieves seamless unified simulation capability from low speed to high speed. Under the condition of low speed flow, γ-Reθt-fRe transition model is automatically restored to the basic γ-Reθt transition model. Under supersonic and hypersonic flow conditions, γ-Reθt-fRe transition model significantly improves the prediction of flow transition trigger position and transition zone development.
[1]LANGTRY R B, MENTER F R.Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes[J].AIAA Jour-nal, 2009, 47(12):2894-2906
[2] LANGTRY R B, SENGUPTA K, YEH D T, et al.Ex-tending the γ-Reθt Local Correlation based Transition Model for Crossflow Effects: AIAA-2015-2474[R]. Reston: AIAA, 2015.
[3]WALTERS D K and LEYLEK J H.A New Model for Boundary Layer Transition Using a Single-Point RANS Approach[J].Journal of Turbomachinery, 2004, 126(1):193-202
[4]MENTER F R, SMIRNOV P E, LIU T, et al.A One-Equation Local Correlation-Based Transition Model[J].Flow, Turbulence and Combustion, 2015, 95(4):583-619
[5] CODER J G.Enhancement of the Amplification Fac-tor Transport Transition Modeling Framework: AIAA-2017-1709[R]. Reston: AIAA, 2017.
[6]张毅锋, 何琨, 张益荣, 等.转捩模型在高超声速流动模拟中的改进及验证[J].宇航学报, 2016, 37(4):397-402
[7]ZHANG Y F, HE K, ZHANG Y R, et al.Improvement and Validation of Menter’s Transition Model for Hy-personic Flow Simulation[J].Journal of Astronautics, 2016, 37(4):397-402
[8]袁先旭, 何琨, 陈坚强, 等.模型飞行试验转捩结果初步分析[J].空气动力学学报, 2018, 36(2):286-293
[9]YUAN X X, HE K, CHEN J Q, et al.Preliminary transition research analysis of MF-1[J].Acta Aerody-namica Sinica, 2018, 36(2):286-293
[10] KRAUSE M, BEHR M, BALLMANN J, Modeling of Transition Effects in Hypersonic Intake Flows Using a Correlation-based Intermittency Model: AIAA-2008-2598[R] .Reston: AIAA, 2008.
[11]ZHANG X D, GAO Z H.A Numerical Research on a Compressibility-correlated Langtry's Transition Model for Double Wedge Boundary Layer Flows[J].Chinese Journal of Aeronautics, 2011, 24(3):249-257
[12]XIA C C, CHEN W F.Boundary-Layer transition pre-diction using a simplified correlation-based model[J].Chinese Journal of Aeronautics, 2016, 29(1):66-75
[13] WANG Y T, LI Y W, XIAO L H, et al.Similarity-solution-based improvement of γ-Reθt model for hy-personic transition prediction[J]. International Journal of Heat and Mass Transfer, 2018, 124: 491-503.[J].International Journal of Heat and Mass Transfer, 2018, (124):491-503
[14] FU S, WANG L.RANS modeling of high-speed aero-dynamic flow transition with consideration of stabil-ity theory[J]. Progress in Aerospace Science, 2012, 58: 36-59.
[15]WANG L, FU S.Development of an intermittency equation for the modeling of the superson-ichypersonic boundary layer flow transition[J].Flow, Turbulence and Combustion, 2011, 87(1):165-187
[16]XU J K, BAI J Q, FU Z Y, et al.Parallel Compatible Transition Closure Model for High-Speed Transitional Flow[J].AIAA Journal, 2017, 55(9):3040-3050
[17]易淼荣, 赵慧勇, 乐嘉陵, 等.基于框架的γ-θ转捩模型[J].航空学报, 2019, 40(8):12276-
[18]YI M R, ZHAO H Y, LE J L, et al.Reθ transition model based on IDDES frame[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(8):12276-
[19]Eckert E R G.Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary-layer flow over surfaces with constant pressure and temperature[J].Transactions of the American Society of Mechanical Engineers, 1956, 78(6):1273-
[20]MENTER F R.Two-Equation Eddy-Viscosity Turbu-lence Models for Engineering Applications[J].AIAA Journal, 1994, 32(8):1598-1605
[21]MEE D.Boundary–Layer Transition Measurements in Hypervelocity Flows in a Shock Tunnel[J].AIAA Journal, 2002, 40(8):1542-1548
[22]CHEN F, MALIK M R, BECKWITH I E.Boundary-Layer Transition on a Cone and Flat Plate at Mach 35[J].AIAA Journal, 1989, 27(6):687-693
[23] SINGER B A, DINAVAHI S P, VENKIT I.Testing of Transition-Region Models: Test Cases and Data[R]. NASA CR 4371, 1991.
[24] 刘周, 龚安龙, 杨云军, 等.基于γ-Reθ转捩模型的尖锥超声速流动转捩模拟[C]. 第十七届全国高超声速气动力/热学术交流会, 贵阳, 2013.
[25]LIU Z, GONG A L, YANG Y J, et al.Supersonic Flow Transition Simulations of Sharp Cone Using γ-Reθ Transition Model[C]. 17th National Hypersonic Aero-dynamics/Heat Symposium Proceeding, Guiyang, 2013 (in Chinese).
[26] Horvath T J, Berry S A, Hollis B R, et al.Boundary Layer Transition on Slender Cones in Conventional and Low Disturbance Mach 6 Wind Tunnels: AIAA-2002-2743[R]. Reston: AIAA, 2002.