流体力学与飞行力学

风洞虚拟飞行试验模型绳系并联支撑机构

  • 吴惠松 ,
  • 林麒 ,
  • 柳汀 ,
  • 刘震 ,
  • 师璐 ,
  • 王晓光
展开
  • 厦门大学 航空航天学院, 厦门 361102

收稿日期: 2021-05-06

  修回日期: 2021-07-22

  网络出版日期: 2021-07-20

基金资助

国家自然科学基金(12072304,11472234,11702232);中央高校基本科研业务费专项资金(20720180071)

Wire-driven parallel suspension mechanism of virtual flight test model in wind tunnel

  • WU Huisong ,
  • LIN Qi ,
  • LIU Ting ,
  • LIU Zhen ,
  • SHI Lu ,
  • WANG Xiaoguang
Expand
  • School of Aerospace Engineering, Xiamen University, Xiamen 361102, China

Received date: 2021-05-06

  Revised date: 2021-07-22

  Online published: 2021-07-20

Supported by

National Natural Science Foundation of China (12072304,11472234,11702232);Fundamental Research Funds for the Central Universities (20720180071)

摘要

提出了一种三自由度风洞虚拟飞行试验模型的绳系并联支撑机构,采用上下各两根绳索牵引飞行器模型,并配合偏航转台模拟飞行器模型的三轴姿态变化,实现3个转动自由度的自由耦合和解耦运动。首先通过螺旋理论的构型设计和自由度分析方法完成该风洞虚拟飞行试验模型支撑机构总体设计;接着通过对支撑平台的结构优化,使得机构运动过程中模型质心与机构转动中心重合,以保证支撑系统的稳定性;最后对该欠约束、可重构、被动驱动的虚拟飞行试验模型绳系并联支撑机构进行运动学和动力学建模,并通过动力学仿真和初步风洞试验,验证了该绳系支撑机构能够满足风洞虚拟飞行试验支撑系统的要求。为发展新型风洞虚拟飞行试验模型提供了新思路,也为飞行器模型的气动力耦合机理和气动参数辨识等风洞试验奠定了基础。

本文引用格式

吴惠松 , 林麒 , 柳汀 , 刘震 , 师璐 , 王晓光 . 风洞虚拟飞行试验模型绳系并联支撑机构[J]. 航空学报, 2022 , 43(8) : 125758 -125758 . DOI: 10.7527/S1000-6893.2021.25758

Abstract

This paper proposes a three Degree-of-Freedom(DOF) mechanism with wire-driven parallel suspension of virtual flight test models in the wind tunnel. The upper and lower wires are used to suspend the aircraft model and incorporate a yaw turntable to simulate its three-axis attitude change to realize the free coupling and decoupling motions of three DOFs of rotation. The overall design of the suspension mechanism of the wind tunnel virtual flight test model is first conducted through the configuration design and the degrees of freedom analysis method of the screw theory. The structure of the supporting platform is then optimized to make the center of mass of the model coincide with the center of rotation of the mechanism during the movement of the mechanism to ensure the stability of the support system; Finally, the kinematics and dynamics model of the virtual flight test model with the unconstrained, reconfigurable and passive drive is established. The dynamic simulation and preliminary wind tunnel test verify the ability of the wire-driven parallel support mechanism to meet the requirements of the wind tunnel virtual flight test support system. This study provides a new idea for the development of new wind tunnel virtual flight test model support, meanwhile laying a foundation for the wind tunnel test research of the aerodynamic coupling mechanism and aerodynamic parameter identification of aircraft models.

参考文献

[1] RATLIFF C L, MARQUART E J. Bridging the gap between ground and flight tests: virtual flight testing (VFT): AIAA-1995-3875[R]. Reston: AIAA, 1995.
[2] 赵忠良, 吴军强, 李浩, 等. 2.4 m跨声速风洞虚拟飞行试验技术研究[J]. 航空学报, 2016, 37(2): 504-512. ZHAO Z L, WU J Q, LI H, et al.Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 504-512(in Chinese).
[3] GEBER T G, KELL Y J, LOPEZ J. Wind tunnel based virtual flight testing: AIAA-2000-0829[R]. Reston: AIAA, 2000.
[4] MAGILL J C, WEHEF S D. Initial test of a wire suspension mount for missile virtual flight testing: AIAA-2002-0169 [R]. Reston: AIAA, 2002.
[5] LAWRENCE F C, MILLS B H. Status update of the AEDC virtual flight testing development program: AIAA-2002-0168 [R]. Reston: AIAA, 2002.
[6] LOWENBERG M H, KYLE H L. Development of a pendulum support rig dynamic wind tunnel apparatus: AIAA-2002-4879 [R]. Reston: AIAA, 2002.
[7] DAVISON P M. Development modelling and control of a multi-degree-of-freedom dynamic wind tunnel rig[D]. Bristol:University of Bristol, 2003.
[8] GATTO A, LOWENBERG M H. Evaluation of a three-degree-of-freedom test rig for stability derivative estimation[J]. Journal of Aircraft, 2006, 43(6): 1747-1762.
[9] PATTINSON J, LOWENBERG M H, GOMAN M G. A Multi-degree-of-freedom rig for the wind tunnel determination of dynamic data: AIAA-2009-5727[R]. Reston: AIAA, 2009.
[10] PATTINSON J, LOWENBERG M H, GOMAN M G. Characterisation of wind tunnel observed large-amplitude pitch limit-cycles: AIAA-2011-6526 [R]. Reston: AIAA, 2011.
[11] GONG Z, ARAUJO-ESTRADA S, LOWENBERG M H, et al. Experimental investigation of aerodynamic hysteresis using a five-degree-of-freedom wind-tunnel maneuver rig[J]. Journal of Aircraft, 2019,56(3): 1-11.
[12] GRISHIN I, KHRABROV A, KOLINKO A, et al. Wind tunnel investigation of critical flight regimes using dynamically scaled actively controlled model in 3 DOF gimbal [C]//29th Congress of the International Council of the Aeronautical Sciences, 2014.
[13] IGNATYEV D I, SIDORYUK M E, KOLINKO A, et al. Dynamic rig for validation of control algorithms at high angles of attack[J]. Journal of Aircraft, 2017, 54(5): 1760-1771.
[14] 李浩. 风洞虚拟飞行试验相似准则和模拟方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012. LI H. Study on the similarity criteria and simulation method of the wind tunnel based virtual flight testing[D]. Mianyan:China Aerodynamics Research and Develop-ment Center, 2012(in Chinese).
[15] 郭林亮, 祝明红, 孔鹏, 等. 风洞虚拟飞行模型机与原型机动力学特性分析[J]. 航空学报, 2016, 37(8): 2583-2593. GUO L L, ZHU M H, KONG P, et al. Analysis of dy-namic characteristics between prototype aircraft and scaled-model of virtual flight test in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2583-2593(in Chinese).
[16] 郭林亮, 祝明红, 傅澔, 等. 一种低速风洞虚拟飞行试验装置的建模与仿真[J]. 空气动力学学报, 2017, 35(5): 708-717. GUO L L, ZHU M H, FU H, et al. Modeling and simula-tion for a low speed wind tunnel virtual flight test rig[J]. Acta Aerodynamica Sinica, 2017, 35(5): 708-717(in Chi-nese).
[17] 郭林亮, 祝明红, 傅澔, 等. 水平风洞中开展飞机尾旋特性研究的理论分析[J]. 航空学报, 2018, 39(6): 122030. GUO L L, ZHU M H, FU H, et al. Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 122030(in Chinese).
[18] 岑飞, 聂博文, 刘志涛, 等. 低速风洞带动力模型自由飞试验[J]. 航空学报, 2017, 38(10): 121214. CEN F, NIE B W, LIU Z T, et al. Low speed wind tunnel free-flight test of powered sub-scale aircraft[J]. Acta Aer-onautica et Astronautica Sinica, 2017, 38(10): 121214(in Chinese).
[19] 岑飞, 聂博文, 刘志涛, 等. 面向先进战斗机研制的风洞模型飞行试验技术[J]. 航空学报, 2020, 41(6): 523444. CEN F, NIE B W, LIU Z T, et al. wind tunnel model flight test technique for advanced fighter aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523444 (in Chinese).
[20] CEN F, LI Q, LIU Z T, et al. Post-stall flight dynamics of commercial transport aircraft configuration: A nonlinear bifurcation analysis and validation[J]. Journal of Aerospace Engineering, 2020, 235(3):1-17.
[21] 吕光男. 风洞虚拟飞行试验中的飞行力学与控制问题研究[D]. 南京: 南京航空航天大学, 2009. LV G N. Research on a flight dynamics and control in wind tunnel based virtual flight test, Master thesis[D]. Nanjing:Nanjing University of Aeronautics and Astro-nautics, 2009(in Chinese).
[22] WANG Z A, GONG Z, CHEN Y L, et al. Practical control implementation of tri-tiltRotor flying wing unmanned aerial vehicles based upon active disturbance rejection control[J]. Journal of Aerospace Engineering, 2020, 234(4):1-18.
[23] 尚祖铭, 吴佳莉, 牛中国, 等. 带等离子控制的飞翼布局飞机模型的风洞虚拟飞行试验[J]. 航空科学技术, 2019, 30(9): 40-46. SHANG Z M, WU J L, NIU Z G, et al, The wind tunnel virtual flight test of flying wing configuration aircraft model with the plasma actuation[J]. Aeronautical Science & Technology, 2019, 30(9): 40-46(in Chinese).
[24] 张石玉, 赵俊波, 付增良, 等. 类F-16飞行器风洞虚拟飞行试验研究[J]. 实验流体力学, 2020,34(1):49-54. ZHANG S Y, ZHAO J B, FU Z L, et al. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54(in Chinese).
[25] 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京:高等教育出版社, 2006. HUANG Z, ZHAO Y S, ZHAO T S. Advanced spatial mechanism[M]. Beijing:Higher Education Press, 2006(in Chinese).
[26] 黄真, 曾达幸. 机构自由度计算-原理和方法[M]. 北京:高等教育出版社, 2016. HUANG Z, ZENG D X, Freedom calculation of mecha-nism: principle and method[M]. Beijing: Higher Education Press, 2016(in Chinese).
[27] 杨文, 王建锋, 吴佳莉. 高机动战斗机气动/运动控制耦合的低速风洞虚拟飞行试验技术研究[C]//第十届全国流体力学学术会议, 2018. YANG W, WANG J F, WU J L. Research on virtual flight test technology of aerodynamic/motion control cou-pling for high maneuverable fighter in low speed wind tunnel[C]//The 10th National Conference on Fluid Mechanics, 2018(in Chinese).
[28] 吴森堂. 飞行控制系统[M]. 北京:北京航空航天大学出版社, 2018. WU S T. Flight control system[M]. Beijing: Beihang University Press, 2018(in Chinese).
[29] 彭苗娇, 吴惠松, 林麒, 等. 考虑绳阻尼的绳系并联机器人动力学特性分析[J]. 北京航空航天大学学报, 2019, 46(2): 304-313. PENG M J, WU H S, LIN Q, et al. Dynamic characteris-tics of wire-driven parallel robot with wire damping[J]. Journal of Beijing University of Aeronautics and Astro-nautics, 2019, 46(2): 304-313(in Chinese).
[30] 潘家鑫, 林麒, 吴惠松, 等. 基于WDPR-8支撑与弯刀尾支撑的风洞对比试验研究[J]. 北京航空航天大学学报, 2021(in press). PAN J X, LIN Q, WU H S, et al. Experimental study on wind tunnel based on WDPR-8 and machetes tail[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021 (in press) (in Chinese).
文章导航

/