论文

极间介质模式对放电诱导烧蚀铣削影响

  • 穆宏鹏 ,
  • 刘志东 ,
  • 周顺程 ,
  • 韩云晓 ,
  • 邱明波
展开
  • 1. 南京航空航天大学 机电学院, 南京 210016;
    2. 南京航空航天大学 直升机传动技术国家级重点实验室, 南京 210016

收稿日期: 2021-03-30

  修回日期: 2021-05-09

  网络出版日期: 2021-07-20

基金资助

国家自然科学基金(51675272);南京航空航天大学"直升机传动技术国家级重点实验室"开放课题(HTL-A-20G05)

Effects of different gap dielectric mode on EDM ablation milling

  • MU Hongpeng ,
  • LIU Zhidong ,
  • ZHOU Shuncheng ,
  • HAN Yunxiao ,
  • QIU Mingbo
Expand
  • 1. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2021-03-30

  Revised date: 2021-05-09

  Online published: 2021-07-20

Supported by

National Natural Science Foundation of China (51675272); Opening Foundation of National Key Laboratory of Science and Technology on Helicopter Transmission (Nanjing University of Aeronautics and Astronautics) (HTL-A-20G05)

摘要

为探究一种更有利于提高放电诱导烧蚀铣削工艺指标的极间介质模式,设计了内喷雾、液中喷雾、液中喷气这3种极间介质模式的对比试验,对材料去除率、相对电极损耗率、表面粗糙度等指标进行了对比。试验发现,液中喷气模式的材料去除率最高,达到131.86 mm3/min,相比于内喷雾、液中喷雾分别提高了7.10%、27.42%;相对电极损耗率最低,为1.81%,相比于内喷雾、液中喷雾降低了72.11%、74.64%;其氧气利用率同样是三者中最高的,达0.81%,相比于内喷雾、液中喷雾提高了44.64%、65.31%。分析表明,液中喷气放电诱导烧蚀铣削加工是在气液分层介质中击穿放电,其排屑状态优于内喷雾和液中喷雾,因此短路拉弧现象减少,电极损耗因而大幅降低,同时该模式具有聚集氧气的优势,有利于提高放电诱导烧蚀铣削加工的工艺指标。

本文引用格式

穆宏鹏 , 刘志东 , 周顺程 , 韩云晓 , 邱明波 . 极间介质模式对放电诱导烧蚀铣削影响[J]. 航空学报, 2022 , 43(4) : 525609 -525609 . DOI: 10.7527/S1000-6893.2021.25609

Abstract

Comparison experiments of near-dry EDM ablation milling, submerged mist-jetting mode and submerged gas-jetting mode are conducted to investigate an optimal gap dielectric mode which benefits improving the process index of EDM ablation milling. Material Removal Rate (MRR), Relative Electrode Wear Rate (REWR) and surface roughness are compared. The experimental results show that the submerged gas-jetting mode gets the highest MRR of 131.86 mm3/min, increased by 7.10% and 27.42% compared to near-dry mode and submerged mist-jetting mode; this mode remains the lowest REWR of 1.81%, reducing by 72.11% and 74.64% compared to near-dry mode and submerged mist-jetting mode; the mode also achieved the largest oxygen utilization rate of 0.81%, increasing by 44.64% and 65.31% in comparison with near-dry mode and submerged mist-jetting mode. The analysis indicates submerged gas-jetting EDM ablation milling sparks in the gas-liquid stratified medium, which shows better debris removal capability than others, and therefore reduced short circuit; thus, REWR of submerged gas-jetting mode reduces sharply. The submerged gas-jetting mode also has the advantage of gathering oxygen, and consequently, is able to improve the performance of EDM ablation milling.

参考文献

[1] CHEN J P, GU L, ZHAO W S, et al. Modeling of flow and debris ejection in blasting erosion arc machining in end milling mode[J]. Advances in Manufacturing, 2020, 8(4):508-518.
[2] WANG F, LIU Y H, ZHANG Y Z, et al. Compound machining of titanium alloy by super high speed EDM milling and arc machining[J]. Journal of Materials Processing Technology, 2014, 214(3):531-538.
[3] 刘志东. 难加工金属材料放电诱导可控烧蚀高效加工技术[J]. 航空制造技术, 2016, 59(22):34-39. LIU Z D. High efficient machining technology of electrical discharge machining ablation for difficult-to-cut metal[J]. Aeronautical Manufacturing Technology, 2016, 59(22):34-39(in Chinese).
[4] 付品清, 周建平, 许燕, 等. 短电弧铣削加工间隙的放电特性研究[J]. 机床与液压, 2020, 48(13):13-16. FU P Q, ZHOU J P, XU Y, et al. Study on discharge characteristics of machining gap in short electrical arc milling[J]. Machine Tool & Hydraulics, 2020, 48(13):13-16(in Chinese).
[5] XU H, GU L, CHEN J P, et al. Machining characteristics of nickel-based alloy with positive polarity blasting erosion arc machining[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(5-8):937-947.
[6] WU X L, LIU Y H, ZHANG X X, et al. Sustainable and high-efficiency green electrical discharge machining milling method[J]. Journal of Cleaner Production, 2020, 274:123040.
[7] LIU K, ZHOU J P, ZHOU Z J, et al. Milling performance of titanium alloy based on short electric arc machining with direct current power source[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(5-6):1641-1652.
[8] 许俊, 刘志东, 徐安阳, 等. 气液混合功能电极电火花诱导烧蚀高效铣削研究[J]. 电加工与模具, 2013(2):16-20, 25. XU J, LIU Z D, XU A Y, et al. Study on high-efficient spark-induced ablation milling by gas-liquid mixture function electrode[J]. Electromachining & Mould, 2013(2):16-20, 25(in Chinese).
[9] 张凯. 电火花诱导雾化烧蚀铣削蚀除机理及电极损耗研究[D]. 南京:南京航空航天大学, 2019:38-44. ZHANG K. Sutdy on the mechanism of spark-induced atomization ablation milling and electrode wear[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:38-44(in Chinese).
[10] 夏永高, 顾琳, 赵万生. 干式和准干式电火花加工技术及应用[J]. 电加工与模具, 2007(6):22-26. XIA Y G, GU L, ZHAO W S. Developments and applications of dry-EDM and quasi-dry-EDM[J]. Electromachining & Mould, 2007(6):22-26(in Chinese).
[11] TAO J, SHIH A J, NI J. Near-dry EDM milling of mirror-like surface finish[J]. International Journal of Electrical Machining, 2008, 13:29-33.
[12] 孔令蕾. 钛合金高效可控放电烧蚀成形加工技术研究[D]. 南京:南京航空航天大学, 2020:86-87. KONG L L. High efficiency controlled discharge ablative forming technology of titanium[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020:86-87(in Chinese).
[13] 陈焕杰, 康小明, 赵万生, 等. 放电介质对液中喷气电火花加工的影响[J]. 航空精密制造技术, 2010, 46(3):29-32, 37. CHEN H J, KANG X M, ZHAO W S, et al. Effects of dielectric medium on submersed gas-jetting EDM[J]. Aviation Precision Manufacturing Technology, 2010, 46(3):29-32, 37(in Chinese).
[14] 徐安阳. 功能电极电火花诱导烧蚀加工机理及试验研究[D]. 南京:南京航空航天大学, 2015:41, 53. XU A Y. The study on experimental and mechanism analysis of EDM-induced ablation machining with the function electrode[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:41, 53(in Chinese).
[15] 杨晓冬. 电火花加工放电蚀除机理及仿真研究[C]//第17届全国特种加工学术会议论文集. 北京:中国机械工程学会, 2017:35. YANG X D. Mechanism and simulation of discharge erosion in EDM[C]//Proceedings of 17th National Academic Conference of non-traditional machining. Beijing:Chinese Mechanical Engineering Society, 2017:35(in Chinese).
[16] 曹凤国. 电火花加工[M]. 北京:化学工业出版社, 2014. CAO F G. Electro-discharge machining[M]. Beijing:Chemical Industry Press, 2014(in Chinese).
[17] 赵艳, 梁陆乙. 利用雷德利克-孔方程计算气体压缩系数[J]. 价值工程, 2015, 34(24):168-169. ZHAO Y, LIANG L Y. Gas compressibility factor calculation with redlich-kwong equation[J]. Value Engineering, 2015, 34(24):168-169(in Chinese).
[18] 乔严锐, 孙化云. 用Excel软件计算混合气体压缩性系数[J]. 压缩机技术, 2014(6):33-35, 58. QIAO Y R, SUN H Y. Calculation of mixed gas compression factor based on excel software[J]. Compressor Technology, 2014(6):33-35, 58(in Chinese).
[19] 王祥志, 刘志东, 江炜. 混气电火花加工气泡形成机理及实验研究[J]. 电加工与模具, 2017(2):6-10. WANG X Z, LIU Z D, JIANG W. Formation mechanism and experimental study of bubbles in mixed-air EDM[J]. Electromachining & Mould, 2017(2):6-10(in Chinese).
[20] 李立青, 赵万生, 孟庆国, 等. 关于介质混气电火花加工机理的分析[J]. 电加工与模具, 2001(5):14-15. LI L Q, ZHAO W S, MENG Q G, et al. Study of air-mixed dielectric EDM mechanism[J]. Electromachining & Mould, 2001(5):14-15(in Chinese).
[21] 万东扬. 喷雾电火花加工机理及稳定性研究[D]. 上海:上海交通大学, 2010:9. WAN D Y. Study of machanism and stability mist-jetting electric discharge milling[D]. Shanghai:Shanghai Jiao Tong University, 2010:9(in Chinese).
[22] 曹建明. 液体喷雾学[M]. 北京:北京大学出版社, 2013. CAO J M. Liquid sprays[M]. Beijing:Peking University Press, 2013(in Chinese).
[23] YU Y T, HSIEH S F, LIN M H, et al. Effects of gas-assisted perforated electrode with rotation on the machining efficiency of PMEDM of titanium[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(3-4):1377-1386.
[24] LIU Z D, WANG X Z, CAO Z L. Influence of discharge energy on EDM ablation[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(1-4):681-688.
文章导航

/