电子电气工程与控制

基于分形插值的空中交通流量短期预测

  • 王飞 ,
  • 韩翔宇
展开
  • 中国民航大学 空管学院, 天津 300300

收稿日期: 2021-03-29

  修回日期: 2021-05-14

  网络出版日期: 2021-07-20

基金资助

国家自然科学基金(U1833103);中央高校基本科研业务费(3122019129)

Short-term prediction of air traffic flow based on fractal interpolation

  • WANG Fei ,
  • HAN Xiangyu
Expand
  • College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China

Received date: 2021-03-29

  Revised date: 2021-05-14

  Online published: 2021-07-20

Supported by

National Natural Science Foundation of China (U1833103); the Fundamental Research Funds for the Central Universities (3122019129)

摘要

为精准实施空中交通流量优化与管理, 对流量短期预测方法进行了研究。首先, 应用重标极差(R/S)方法计算流量时间序列的Hurst指数, 来识别分形特征。其次, 应用分形插值模型为每个相似日建立迭代函数系, 并将所有相似日的迭代函数系进行加权, 形成1个统计意义上的迭代函数系, 从任意已知点出发, 通过多次迭代获得稳定的吸引子曲线, 进而得到流量预测值。最后, 采集35天的实际运行数据进行算例分析。结果显示: 60 min尺度流量时间序列的Hurst指数为0.333 6, 具有分形特征; 预测结果的均衡系数为0.957 4、平均绝对相对误差为0.086 7;统计尺度为30 min和15 min的流量时序也具有分形特征, 预测结果的均衡系数分别为0.925 9和0.875 7;临近相似日和相同周天相似日的预测结果没有显著差异; 相较于传统模型, 本文方法对于分形时序预测具有更好适应性。结果说明, 分形插值模型用于空中交通流量短期预测是可行的和有效的, 预测准确性随着统计尺度的减小而降低。

本文引用格式

王飞 , 韩翔宇 . 基于分形插值的空中交通流量短期预测[J]. 航空学报, 2022 , 43(9) : 325585 -325585 . DOI: 10.7527/S1000-6893.2021.25585

Abstract

To implement optimization and management of air traffic flow accurately, a short-term flow prediction method is proposed based on fractal interpolation. Firstly, the Hurst index is calculated by the Rescaled Range Analysis (R/S) method to identify the fractal features of flow time series. Secondly, the fractal interpolation model is used to establish the iterated function system for each similar day, and the iterative function system of all similar days is weighted to form an iterated function system in the statistical sense. Starting from any given point, the stable attractor curve is obtained through multiple iterations, and then the flow prediction values are obtained. Finally, the actual operation data of 35 days are collected for example analysis. The results show that the Hurst index of 60 min scale flow time series is 0.333 6, so that the time series has fractal characteristics. The equilibrium coefficient and the average absolute relative error of prediction results is 0.957 4 and 0.086 7, respectively. The flow time series with the statistical scale of 30 min and 15 min also have fractal characteristics, and the equilibrium coefficients are 0.925 9 and 0.875 7, respectively. There is no significant difference between the prediction results of the similar days close to the prediction day and the similar days of the same day in different weeks. Compared with the traditional model, the method proposed has better adaptability for fractal time series prediction. The fractal interpolation model is found to be feasible and effective for the short-term prediction of air traffic flow, and the prediction accuracy decreases with the decrease of statistical scale.

参考文献

[1] WANG C, GUO J X, SHEN Z P. Prediction of 4D trajectory based on basic flight models[J]. Journal of Southwest Jiaotong University, 2009, 44(2): 295-300 (in Chinese). 王超, 郭九霞, 沈志鹏. 基于基本飞行模型的4D航迹预测方法[J]. 西南交通大学学报, 2009, 44(2): 295-300.
[2] MA B M, YANG H Y, YU J. A flow forecast amending algorithm based on real-time track[J]. Microcomputer Information, 2010, 26(4): 186-187, 197 (in Chinese). 马博敏, 杨红雨, 余静. 一种基于实时航迹的流量预测修正算法[J]. 微计算机信息, 2010, 26(4): 186-187, 197.
[3] TIAN W, HU M H. Airspace sector probabilistic traffic demand prediction model[J]. Journal of Southwest Jiaotong University, 2011, 46(2): 340-346 (in Chinese). 田文, 胡明华. 空域扇区概率交通需求预测模型[J]. 西南交通大学学报, 2011, 46(2): 340-346.
[4] WANG C, YANG L. Probabilistic methods for airspace sector flow and congestion prediction[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 162-166 (in Chinese). 王超, 杨乐. 空域扇区流量与拥塞预测的概率方法[J]. 西南交通大学学报, 2011, 46(1): 162-166.
[5] LU F, ZHANG Z N, ZHANG D M, et al. A model ofrealtime air traffic flow forecast based on flight plan[J]. Science Technology and Engineering, 2014, 14(16): 165-169 (in Chinese). 卢飞, 张兆宁, 张东满, 等. 基于航班计划的空域交通流量实时预测模型[J]. 科学技术与工程, 2014, 14(16): 165-169.
[6] LI S M, XU X H, MENG L H. Flight conflictforecasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(4): 388-394.
[7] CONG W, HU M H. Chaotic characteristic analysis of air traffic system[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 31(6): 636-642.
[8] WANG C, ZHENG X F, WANG L. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 171-178 (in Chinese). 王超, 郑旭芳, 王蕾. 交汇航路空中交通流的非线性特征研究[J]. 西南交通大学学报, 2017, 52(1): 171-178.
[9] WANG F. Nonlinear fractal characteristics of air traffic flow[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1147-1154 (in Chinese). 王飞. 空中交通流非线性分形特征[J]. 西南交通大学学报, 2019, 54(6): 1147-1154.
[10] WANG F. Empirical analysis on air traffic flow long phase correlation based on Hurst exponent[J]. Journal of Civil Aviation University of China, 2019, 37(2): 1-4 (in Chinese). 王飞. 基于Hurst指数的空中交通流长相关性实证分析[J]. 中国民航大学学报, 2019, 37(2): 1-4.
[11] YANG Y. Research on short term forecasting method of air traffic flow[D]. Tianjin: Civil Aviation University of China, 2017: 33-41 (in Chinese). 杨阳. 空中交通流量短期预测方法研究[D]. 天津: 中国民航大学, 2017: 33-41.
[12] WANG C, ZHU M, ZHAO Y D. Air traffic flow prediction model based on improved adding-weighted one-rank local-region method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213 (in Chinese). 王超, 朱明, 赵元棣. 基于改进加权一阶局域法的空中交通流量预测模型[J]. 西南交通大学学报, 2018, 53(1): 206-213.
[13] YANG J. Research on the method of forecast the stock price based on fractal market[D]. Changsha: National University of Defense Technology, 2008: 23-35 (in Chinese). 杨剑. 基于分形市场的股票价格预测方法研究[D]. 长沙: 国防科学技术大学, 2008: 23-35.
[14] DONG C S, MA L. A forecast model of stock index based on variable dimension fractal[J]. Journal of Liaoning Technical University (Natural Science), 2011, 30(5): 774-777 (in Chinese). 董春胜, 马玲. 基于变维分形的股票指数预测模型[J]. 辽宁工程技术大学学报(自然科学版), 2011, 30(5): 774-777.
[15] LIU Q Z, XING Z. The consumer price index prediction based on fractal theory[J]. Henan Science, 2014, 32(4): 645-649 (in Chinese). 刘清志, 邢梓. 基于分形理论的居民消费价格指数预测[J]. 河南科学, 2014, 32(4): 645-649.
[16] ZHU Z H, WU H W, WENG Z S, et al. Forecast of railway passenger and freight traffic volume based on fractal theory[J]. Railway Transport and Economy, 2011, 33(7): 80-84 (in Chinese). 朱子虎, 吴华稳, 翁振松, 等. 基于分形理论的铁路客货运量预测[J]. 铁道运输与经济, 2011, 33(7): 80-84.
[17] FANG W Q, JIANG Y H, WEN J. Forecast air cargo volume by using the fractal theory[J]. Technology & Economy in Areas of Communications, 2009, 11(2): 105-106, 109 (in Chinese). 方文清, 蒋由辉, 文军. 分形理论用于航空货运量的预测[J]. 交通科技与经济, 2009, 11(2): 105-106, 109.
[18] LI M, CHENG H Z, YANG Z L, et al. Improved forecasting method of typical daily load curve based on fractal interpolation[J]. Proceedings of the CSU-EPSA, 2015, 27(3): 36-41 (in Chinese). 李萌, 程浩忠, 杨宗麟, 等. 采用分形插值的典型日负荷曲线改进预测方法[J]. 电力系统及其自动化学报, 2015, 27(3): 36-41.
[19] ZHAI M Y. A new method for short-term load forecasting based on fractal interpretation and wavelet analysis[J]. International Journal of Electrical Power & Energy Systems, 2015, 69: 241-245.
[20] ZHANG H W, LU R Q, NIU Z G. Prediction method of urban daily water consumption based on fractional theory[J]. Journal of Tianjin University, 2009, 42(1): 56-59 (in Chinese). 张宏伟, 陆仁强, 牛志广. 基于分形理论的城市日用水量预测方法[J]. 天津大学学报, 2009, 42(1): 56-59.
[21] MEI H B, WANG J, ZHANG H Z. Research of fractal forecasting algorithm of traffic flow on urban expressway[J]. Journal of Highway and Transportation Research and Development, 2009, 26(10): 105-110 (in Chinese). 梅宏标, 王坚, 张慧哲. 城市快速路交通流分形预测算法的研究[J]. 公路交通科技, 2009, 26(10): 105-110.
[22] BARNSLEY M F, DEMKO S. Iterated function systems and the global construction of fractals[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1985, 399(1817): 243-275.
[23] ZHANG W, CHEN K. Two fractal iterative algorithm in the application of short-term load forecasting[J]. Electrical Engineering, 2012(7): 11-14 (in Chinese). 张巍, 陈恳. 应用分形两种迭代算法作短期负荷预测[J]. 电气技术, 2012(7): 11-14.
[24] TAO T, LIU S Q. Water demand forecasting method based on fractional theory[J]. Journal of Tongji University, 2004, 32(12): 1647-1650 (in Chinese). 陶涛, 刘遂庆. 基于分形理论的需水量预测方法[J]. 同济大学学报(自然科学版), 2004, 32(12): 1647-1650.
[25] MAZEL D S, HAYES M H. Using iterated function systems to model discrete sequences[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1724-1734.
[26] HE T, ZHOU Z O. Prediction of chaotic time series based on fractal self-affinity[J]. Acta Physica Sinica, 2007, 56(2): 693-700 (in Chinese). 贺涛, 周正欧. 基于分形自仿射的混沌时间序列预测[J]. 物理学报, 2007, 56(2): 693-700.
[27] JIANG X. Chaos theory and data fusion based short-term prediction for traffic flow[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2016 (in Chinese). 蒋肖. 基于混沌理论和数据融合的短时交通流预测[D]. 重庆: 重庆邮电大学, 2016.
文章导航

/