材料工程与机械制造

基于机理驱动模型的卧式加工中心时变误差补偿

  • 宋磊 ,
  • 刘阔 ,
  • 崔益铭 ,
  • 陈虎 ,
  • 陈玉峰 ,
  • 王永青
展开
  • 1. 大连理工大学 精密与特种加工教育部重点实验室, 大连 116024;
    2. 科德数控股份有限公司, 大连 116600

收稿日期: 2021-03-21

  修回日期: 2021-07-21

  网络出版日期: 2021-07-20

基金资助

国家自然科学基金(51775085);辽宁省科技重大专项(2020JH1/10100016);国家科技重大专项(2017ZX04011013);辽宁省'兴辽英才计划’项目(XLYC1807081)

Time-varying error compensation for horizontal machining center based on mechanism-driven model

  • SONG Lei ,
  • LIU Kuo ,
  • CUI Yiming ,
  • CHEN Hu ,
  • CHEN Yufeng ,
  • WANG Yongqing
Expand
  • 1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China;
    2. Kede CNC Co., Ltd. Dalian 116600, China

Received date: 2021-03-21

  Revised date: 2021-07-21

  Online published: 2021-07-20

Supported by

National Natural Science Foundation of China (51775085); Liaoning Science and Technology Major Project (2020JH1/10100016); National Science and Technology Major Project (2017ZX04011013); Liaoning Revitalization Talents Program (XLYC1807081)

摘要

航空工业对数控机床的需求具有高精度、复合及多轴联动等特点。数控机床的时变误差影响航空零件批量加工时的精度稳定性。对此,基于传热机理的时变误差模型对航发企业的卧式加工中心进给轴进行时变误差补偿。对卧式加工中心进给轴时变误差进行了测试,并对模型中的热特性参数进行了辨识。基于TCP/IP协议建立时变误差补偿器与数控系统之间的通讯,通过机床坐标原点偏置方式实现时变误差实时补偿。最后,在某航发企业卧式加工中心HAAS HS-1RP上开展了补偿效果的验证试验。试验结果表明,补偿后进给轴热致时变误差可以减少85.2%,大幅提高了机床的精度稳定性。

本文引用格式

宋磊 , 刘阔 , 崔益铭 , 陈虎 , 陈玉峰 , 王永青 . 基于机理驱动模型的卧式加工中心时变误差补偿[J]. 航空学报, 2022 , 43(7) : 425549 -425549 . DOI: 10.7527/S1000-6893.2021.25549

Abstract

The demand for CNC machine tools in aviation industry is characterized by high accuracy, compound and multi-axis link-age. The accuracy stability of the aeronautical parts machined by batch-process is affected by time-varying error of CNC machine tools. Therefore, the time-varying error of feed axes for horizontal machining center of aero engine enterprises is compensated in real-time based on mechanism-driven time-varying error model. The time-varying error of feed axes is measured, and the thermal characteristic parameters in the model are identified. The compensator of time-varying error communicates with CNC system based on TCP/IP protocol. The method of machine tool coordinate origin offset was used to compensate the time-varying error. Finally, the test verification is implemented on a horizontal machine tool, the HAAS HS-1RP. The results show that the time-varying error of feed axis can be reduced by 85.2% with error compensation, and the accuracy stability of machine tool is improved greatly.

参考文献

[1] LIU K, LIU Y, SUN M J, et al. Comprehensive thermal growth compensation method of spindle and servo axis error on a vertical drilling center[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):2507-2516.
[2] LIANG Y C, SU H, LU L H, et al. Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1-4):635-645.
[3] 高建民,史晓军,许艾明,等.高速高精度机床热分析与热设计技术[J].中国工程科学, 2013, 15(1):28-33. GAO J M, SHI X J, XU A M, et al. Thermal analysis and design technology of high-speed and high-precision machine tools[J]. Strategic Study of CAE, 2013, 15(1):28-33(in Chinese).
[4] TAMAI A, KURITA T, MATSUE T, et al. Machine tool slide protection-uses thermal insulation or shrouding to equalise thermal distortion through ambient or operating conditions:German, DE3527491-A[P]. 1986-02-13.
[5] XU Z Z, LIU X, KIM H, et al. Thermal error forecast and performance evaluation for an air-cooling ball screw system[J]. International Journal of Machine Tools&Manufacture, 2011, 51(7-8):605-611.
[6] DONMEZ M, BLOMQUIST D, HOCKEN R, et al. A general methodology for machine tool accuracy enhancement by error compensation[J]. Precision Engineering, 1986, 8(4):187-196.
[7] WU C, KUNG Y. Thermal analysis for the feed drive system of a CNC machine center[J]. International Journal of Machine Tools and Manufacture, 2003, 43(15):1521-1528.
[8] XU M, JIANG S Y. A thermal model of a ball screw feed drive system for a machine tool[J]. Proceedings of the Institution of Mechanical Engineers, Part C-Journal of Mechanical Engineering Science, 2011, 225(C1):186-193.
[9] 王新孟,杨军,梅雪松,等.精密坐标镗床进给系统热误差分析与预测[J].西安交通大学学报, 2015, 49(10):22-28. WANG X M, YANG J, MEI X S, et al. Analysis and prediction for thermal error of precision coordinate boring machine[J]. Journal of Xi'an Jiaotong University, 2015, 49(10):22-28(in Chinese).
[10] 林伟青,傅建中,陈子辰,等.数控机床热误差的动态自适应加权最小二乘支持矢量机建模方法[J].机械工程学报, 2009, 45(3):178-182. LIN W Q, FU J Z, CHEN Z C, et al. Modeling of NC machine tool thermal error based on adaptive best-fitting WLS-SVM[J]. Journal of Mechanical Engineering, 2009, 45(3):178-182(in Chinese).
[11] ZHANG Y F, WANG P, LIU T, et al. Active and intelligent control onto thermal behaviors of a motorized spindle unit[J]. International Journal of Advanced Manufacturing Technology, 2018, 98(9-12):3133-3146.
[12] MA C, ZHAO L, MEI X S, et al. Thermal error compensation based on genetic algorithm and artificial neural network of the shaft in the high-speed spindle system[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2017, 231(5):753-767.
[13] LIU J L, MA C, WANG S L. Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools[J]. Mechanical Systems and Signal Processing, 2020, 138:106538.
[14] 要小鹏,殷国富,李光明.数控机床进给轴综合误差解耦建模与补偿研究[J].机械工程学报, 2016, 52(1):184-192. YAO X P, YIN G F, LI G M. Positioning error of feed axis decouple-separating modeling and compensating research for CNC machine tools[J]. Journal of Mechanical Engineering, 2016, 52(1):184-192(in Chinese).
[15] 李永祥,杨建国.灰色系统模型在机床热误差建模中的应用[J].中国机械工程, 2006(23):2439-2442. LIN Y X, YANG J G. Application of grey system model to thermal error modeling on machine tools[J]. China Mechanical Engineering, 2006(23):2439-2442(in Chinese).
[16] ABDULSHAHED A M, LONGSTAFF A P, FLETCHER S, et al. Thermal error modelling of a gantry-type 5-axis machine tool using a grey neural network model[J]. Journal of Manufacturing Systems, 2016, 41:130-142.
[17] 王海同,李铁民,王立平,等.机床热误差建模研究综述[J].机械工程学报, 2015, 51(9):119-128. WANG H T, LI T M, WANG L P, et al. Review on thermal error modeling of machine tools[J]. Journal of Mechanical Engineering, 2015, 51(9):119-128(in Chinese).
[18] AHN J Y, CHUNG S C. Real-time estimation of the temperature distribution and expansion of a ball screw system using an observer[J]. Proc IMechE, Part B:J Engineering Manufacture, 2004, 218(12):1667-1681.
[19] ATTIA M, FRASER S. A generalized modelling methodology for optimized real-time compensation of thermal deformation of machine tools and CMM structures[J]. International Journal of Machine Tools&Manufacture, 1999, 39:1001-1016.
[20] SHI H, MA C, YANG J, et al. Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools[J]. International Journal of Machine Tools&Manufacture, 2015, 97:60-71.
[21] LIU K, SUN M J, WU Y L, et al. Thermal error modeling method for a CNC machine tool feed drive system[J]. Mathematical Problems in Engineering, 2015, 2015:436717.
文章导航

/