论文

热障涂层水助激光扫描加工试验

  • 王斌 ,
  • 王海涛 ,
  • 王玉峰 ,
  • 张文武
展开
  • 1. 中国科学院 宁波材料技术与工程研究所 先进制造技术研究所, 宁波 315201;
    2. 浙江省航空发动机极端制造技术研究重点实验室, 宁波 315201;
    3. 中国科学院大学 材料科学与光电技术学院, 北京 100049

收稿日期: 2021-02-01

  修回日期: 2021-03-02

  网络出版日期: 2021-07-20

基金资助

中国科学院重点部署项目(ZDRW-CN-2019-01);浙江省重点研发计划择优项目(2020C01036);浙江省自然科学基金(LY18E050027);宁波市科技创新2025重大专项(2019B10074)

Water-assisted laser scanning machining test of thermal barrier coating

  • WANG Bin ,
  • WANG Haitao ,
  • WANG Yufeng ,
  • ZHANG Wenwu
Expand
  • 1. Institute of Advanced Manufacturing Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
    2. Key Laboratory of Aero Engine Extreme Manufacturing Technology of Zhejiang Province, Ningbo 315201, China;
    3. College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-02-01

  Revised date: 2021-03-02

  Online published: 2021-07-20

Supported by

Key Deployment Projects of the Chinese Academy of Sciences (ZDRW-CN-2019-01);Excellent Projects of Zhejiang Province (2020C01036);Natural Science Foundation of Zhejiang Province (LY18E050027);Science and Technology Innovation 2025 Major Project of Ningbo City (2019B10074)

摘要

为了提升涡轮发动机的整体性能和可靠性,需要在带热障涂层(TBC)的单晶高温合金涡轮叶片上制备大量气膜冷却孔,激光加工是实现"先涂层后打孔"的优势加工手段。采用水助激光扫描加工方法,通过正交试验和单因素试验研究了各因素对TBC损伤程度和TBC材料去除率的影响关系,试验结果表明对涂层剥落损伤的影响程度由大到小依次为光斑重叠率、激光重复频率、激光器电流和水泵电压,当光斑重叠率为98%、激光重复频率为50 kHz、激光器电流为38 A、水泵电压为14 V时,可以避免TBC水助激光加工出现剥落损伤;对TBC材料去除率的影响程度由大到小依次为激光器电流、激光重复频率、水泵电压和光斑重叠率,当优选激光器电流为38 A、激光重复频率为15 kHz、水泵电压为14 V、光斑重叠率为80%时,TBC材料去除效率最高。分析了TBC水助激光加工涂层剥落损伤的形成原因是热应力和等离子体力学冲击共同作用的结果,同时水助激光加工产生的气泡空蚀会导致加工区域周边涂层颜色变白,影响范围约为59.5 μm,空蚀去除厚度约2.7 μm。以上研究为带热障涂层单晶高温合金涡轮叶片气膜孔水助激光高效低损伤加工提供了技术支撑。

本文引用格式

王斌 , 王海涛 , 王玉峰 , 张文武 . 热障涂层水助激光扫描加工试验[J]. 航空学报, 2022 , 43(4) : 525353 -525353 . DOI: 10.7527/S1000-6893.2021.25353

Abstract

To improve the overall performance and reliability of turbine engines, it is necessary to drill a large number of air film cooling holes on the single-crystal superalloy turbine blades with Thermal Barrier Coating (TBC). Laser processing is an advantageous method to realize coating before drilling. By using the water-assisted laser scanning machining, the orthogonal test and the single factor test have been conducted to study the effects of various factors on the TBC damage and its material removal rate. The results show that the impacts of spot overlap rate, laser repetition frequency, laser current and the pump voltage on the coating damage are in descending order. When the spot overlap rate is 98%, the laser repetition frequency 50 kHz, the laser current 38 A and the pump voltage 14 V, the peeling damage can be avoided in TBC water-assisted laser processing. While the effects of laser current, laser repetition frequency, pump voltage and spot overlap rate on TBC material removal rate are in descending order. When the optimal laser current is 38 A, laser repetition frequency 15 kHz, pump voltage 14 V and spot overlap rate 80%, the material removal efficiency of TBC is the highest. It has been analyzed that the coating peeling damage in TBC water-assisted laser processing is resulted from the joint effects of thermal stress and plasma dynamical shock. Meanwhile, the bubble cavitation caused by water-assisted laser processing will whiten the color of the coating around the processing area, with an influence range of about 59.5 μm and the removal thickness of cavitation about 2.7 μm. The research above has provided technical support for efficient and low damage laser processing of gas film holes in single-crystal superalloy turbine blades with thermal barrier coating.

参考文献

[1] 黄维, 黄春峰, 王永明, 等. 先进航空发动机关键制造技术研究[J]. 国防制造技术, 2009(3):42-48, 52. HUANG W, HUANG C F, WANG Y M, et al. Key manufacturing technology research of advanced aero-engine[J]. Defense Manufacturing Technology, 2009(3):42-48, 52(in Chinese).
[2] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10):2722-2732. GUO H B, GONG S K, XU H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2722-2732(in Chinese).
[3] 郭磊, 高远, 辛会. 热障涂层的激光表面改性参数优化和结构设计[J]. 航空学报, 2021, 42(7):424114. GUO L, GAO Y, XIN H. Laser modification parameters optimization and structural design of thermal barrier coatings[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):424114(in Chinese).
[4] YAO Y, ZHANG J Z, TAN X M. Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side[J]. International Communications in Heat and Mass Transfer, 2014, 52:61-72.
[5] WANG R J, DONG X, WANG K D, et al. Two-step approach to improving the quality of laser micro-hole drilling on thermal barrier coated nickel base alloys[J]. Optics and Lasers in Engineering, 2019, 121:406-415.
[6] 董丽虹, 郭伟, 王海斗, 等. 热障涂层界面脱粘缺陷的脉冲红外热成像检测[J]. 航空学报, 2019, 40(8):422895. DONG L H, GUO W, WANG H D, et al. Inspection of interface debonding in thermal barrier coatings using pulsed thermography[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):422895(in Chinese).
[7] KUMAR V, BALASUBRAMANIAN K. Progress update on failure mechanisms of advanced thermal barrier coatings:A review[J]. Progress in Organic Coatings, 2016, 90:54-82.
[8] 周锐, 张姿, 洪明辉. 激光微加工在航空发动机MRO中的应用[J]. 中国科学:物理学力学天文学, 2020, 50(3):034202. ZHOU R, ZHANG Z, HONG M H. Laser microprocessing for aeroengine MRO support[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(3):034202(in Chinese).
[9] 程广贵, 唐荣荣, 杨诚, 等. 基于正交试验的热障涂层性能变化规律研究[J]. 热喷涂技术, 2019, 11(2):49-57. CHENG G G, TANG R R, YANG C, et al. Study on the variation rules of thermal barrier coatings performance based on orthogonal experiment[J]. Thermal Spray Technology, 2019, 11(2):49-57(in Chinese).
[10] 孙瑞峰, 张晓兵, 曹文斌, 等. 带热障涂层镍基单晶高温合金的激光制孔研究[J]. 稀有金属材料与工程, 2014, 43(5):1193-1198. SUN R F, ZHANG X B, CAO W B, et al. Laser drilling of Ni-base single-crystal superalloy through thermal barrier coatings[J]. Rare Metal Materials and Engineering, 2014, 43(5):1193-1198(in Chinese).
[11] 张学谦, 邢松龄, 刘磊, 等. 带热障涂层的高温合金飞秒激光旋切打孔[J]. 中国激光, 2017, 44(1):0102013. ZHANG X Q, XING S L, LIU L, et al. Trepanning of supper-alloy with thermal barrier coating using femtosecond laser[J]. Chinese Journal of Lasers, 2017, 44(1):0102013(in Chinese).
[12] SYNOVA. Synova laser microjet:Water jet guided laser technology[EB/OL].[2021-03-05]. https://www.synova.ch/technology/laser-microjet.html.
[13] 蔡敏, 张晓兵, 张伟, 等. 超快激光加工斜孔对热障涂层热循环剥落失效的影响[J]. 航空制造技术, 2018, 61(17):38-41, 70. CAI M, ZHANG X B, ZHANG W, et al. Effect of ultrafast laser processing inclined holes on thermal barrier coatings(TBCs) spallation failure[J]. Aeronautical Manufacturing Technology, 2018, 61(17):38-41, 70(in Chinese).
[14] 张强, 贺斌, 田东坡, 等. 飞秒激光带热障涂层叶片气膜孔加工技术研究进展[J]. 航空科学技术, 2018, 29(2):9-14. ZHANG Q, HE B, TIAN D P, et al. Development of gas film holes machining on turbine blades with thermal barrier coating by femtosecond laser[J]. Aeronautical Science & Technology, 2018, 29(2):9-14(in Chinese).
[15] FOEHL C, DAUSINGER F. High precision deep drilling with ultrashort pulses[C]//Fourth International Symposium on Laser Precision Microfabrication, 2003.
[16] 刘新灵, 陶春虎, 刘春江, 等. 航空发动机叶片气膜孔加工方法及其演变分析[J]. 材料导报, 2013, 27(21):117-120. LIU X L, TAO C H, LIU C J, et al. Investigation of processing methods and development of gas holes of engine blade[J]. Materials Reports, 2013, 27(21):117-120(in Chinese).
[17] LEITZ K H, REDLINGSHÖFER B, REG Y, et al. Metal ablation with short and ultrashort laser pulses[J]. Physics Procedia, 2011, 12:230-238.
[18] WANG Y F, ZHANG Z, ZHANG G Y, et al. Study on immersion waterjet assisted laser micromachining process[J]. Journal of Materials Processing Technology, 2018, 262:290-298.
[19] KRUUSING A. Underwater and water-assisted laser processing:Part 1-General features, steam cleaning and shock processing[J]. Optics and Lasers in Engineering, 2004, 41(2):307-327.
[20] KRUUSING A. Underwater and water-assisted laser processing:Part 2-Etching, cutting and rarely used methods[J]. Optics and Lasers in Engineering, 2004, 41(2):329-352.
[21] TSENG S F, CHEN M F, HSIAO W T, et al. Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies[J]. Optics and Lasers in Engineering, 2014, 57:58-63.
[22] 徐荣青, 陈笑, 沈中华, 等. 固体壁面附近激光空泡的动力学特性研究[J]. 物理学报, 2004, 53(5):1413-1418. XU R Q, CHEN X, SHEN Z H et al. Dynamics of laser-induced cavitation bubbles near solid boundaries[J]. Acta Physica Sinica, 2004, 53(5):1413-1418(in Chinese).
[23] 龙芋宏. 溶液辅助激光加工技术研究[M]. 西安:西安电子科技大学出版社, 2017. LONG Y H. Research on liquor-assisted laser processing technology[M]. Xi'an:Xidian University Press, 2017(in Chinese).
[24] OHL C D, ARORA M, DIJKINK R, et al. Surface cleaning from laser-induced cavitation bubbles[J]. Applied Physics Letters, 2006, 89(7):074102.
[25] ISSELIN J C, ALLONCLE A P, AUTRIC M. On laser induced single bubble near a solid boundary:Contribution to the understanding of erosion phenomena[J]. Journal of Applied Physics, 1998, 84(10):5766-5771.
文章导航

/