多相流与反应流的机理、模型及其调控技术专栏

气固两相湍流场纳米颗粒演变特性综述

  • 石瑞芳 ,
  • 林建忠
展开
  • 浙江大学 航空航天学院 流体工程研究所, 杭州 310027

收稿日期: 2021-05-17

  修回日期: 2021-06-28

  网络出版日期: 2021-07-09

基金资助

国家自然科学基金重大研究计划(91852102)

A review on evolution characteristics of nanoparticles in gas-solid two-phase turbulent flow field

  • SHI Ruifang ,
  • LIN Jianzhong
Expand
  • Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

Received date: 2021-05-17

  Revised date: 2021-06-28

  Online published: 2021-07-09

Supported by

Major Program of the National Natural Science Foundation of China (91852102)

摘要

含纳米颗粒的气固两相湍流场在包括航空等众多领域中很常见,以单体、聚集体和团聚体不同形式存在的纳米颗粒在流场中经过生成、对流、扩散、凝并、破碎等过程,其数密度、尺度、尺度分散度等将发生变化。本文就以上相关研究状况进行了回顾,说明颗粒生成是气相化学反应产生的可冷凝蒸汽物质因表面冷却、绝热膨胀或混合、湍流混合或化学过程产生的过饱和所导致;导致颗粒凝并的原因包括布朗运动、湍流剪切、速度梯度、差异沉降;颗粒的凝并取决于颗粒的尺度和流场的特性,并受初始颗粒分布及湍流扩散控制;湍流场对颗粒凝并的影响除了湍流强度的因素外,还体现在由湍流脉动所引发的颗粒数密度的脉动;颗粒凝并后形成尺度较大的团聚体容易在流场剪切和其他因素作用下发生破碎;剪切破碎是导致颗粒破碎的主要因素,有效破碎系数取决于剪切率和颗粒的体积分数;颗粒的沉降取决于颗粒尺度、形状和流体性质等因素;导致颗粒沉降的因素有重力、扩散、惯性撞击、电场和热迁移等;当存在温度梯度时,热泳力对颗粒沉降也起到重要作用。本文最后提出了有待进一步研究的若干问题。

本文引用格式

石瑞芳 , 林建忠 . 气固两相湍流场纳米颗粒演变特性综述[J]. 航空学报, 2021 , 42(12) : 625825 -625825 . DOI: 10.7527/S1000-6893.2021.25825

Abstract

The gas-solid two-phase turbulent flow with nanoparticles is very common in many fields including aviation. In the flow field, the nanoparticles, in the form of monomer and aggregate, undergo the processes of generation, convection, diffusion, coagulation and breakage, while the number density, scale and scale dispersion of particles will change. In this paper, we review the above research and draw the following main conclusions:Particle formation is caused by surface cooling, adiabatic expansion or mixing, turbulent mixing or supersaturation of condensable vapor produced by gas-phase chemical reaction; the causes of particle coagulation include Brownian motion, turbulent shear, velocity gradient and differential settlement; particle coagulation depends on particle size and flow field characteristics, and is controlled by initial particle distribution and turbulent diffusion; the influence of turbulence field on particle coagulation is not only the turbulence intensity, but also the fluctuation of particle number density caused by turbulence fluctuation; the agglomerates with large size formed after particle coagulation are easy to be broken under the action of flow shear and other factors; shear fracture is the main factor leading to particle breakage; and the effective breakage coefficient depends on the shear rate and the volume fraction of particles; the deposition of particles depends on the particle size, shape and fluid properties of particles; gravity, diffusion, inertial impact, electric field and heat transfer are the main factors leading to particle deposition; when there is a temperature gradient, the thermophoretic force also plays an important role in particle deposition. Finally, some problems are put forward for further studies.

参考文献

[1] KLEINSTREUER C, ZHANG Z. Airflow and particle transport in the human respiratory system[J]. Annual Review of Fluid Mechanics, 2010, 42(1):301-334.
[2] 胡健平, 徐国华, 史勇杰, 等. 基于CFD-DEM耦合数值模拟的全尺寸直升机沙盲形成机理[J]. 航空学报, 2020, 41(3):123363. HU J P, XU G H, SHI Y J, et al. Formation mechanism of brownout in full-scale helicopter based on CFD-DEM couplings numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123363(in Chinese).
[3] ZHU J Z, QI H Y, WANG J S. Nanoparticle dispersion and coagulation in a turbulent round jet[J]. International Journal of Multiphase Flow, 2013, 54:22-30.
[4] WENGELER R, NIRSCHL H. Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates[J]. Journal of Colloid and Interface Science, 2007, 306(2):262-273.
[5] LIN J Z, CHAN T L, LIU S, et al. Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8(1):45-54.
[6] KIM D S, HONG S B, KIM Y J, et al. Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence[J]. Journal of Aerosol Science, 2006, 37(12):1781-1787.
[7] ABRAHAMSON J. Collision rates of small particles in a vigorously turbulent fluid[J]. Chemical Engineering Science, 1975, 30(11):1371-1379.
[8] TSANTILIS S, PRATSINIS S E, HAAS V. Simulation of synthesis of palladium nanoparticles in a jet aerosol flow condenser[J]. Journal of Aerosol Science, 1999, 30(6):785-803.
[9] YU M Z, LIN J Z, ZHANG K, et al. Two-way coupling model for fractal-like agglomerate-laden multiphase flow[C]//Proceedings of ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. New York:ASME, 2010:399-405.
[10] RIGOPOULOS S. PDF method for population balance in turbulent reactive flow[J]. Chemical Engineering Science, 2007, 62(23):6865-6878.
[11] EATON J K, FESSLER J R. Preferential concentration of particles by turbulence[J]. International Journal of Multiphase Flow, 1994, 20:169-209.
[12] READE W C, COLLINS L R. Effect of preferential concentration on turbulent collision rates[J]. Physics of Fluids, 2000, 12(10):2530-2540.
[13] WOOD A M, HWANG W, EATON J K. Preferential concentration of particles in homogeneous and isotropic turbulence[J]. International Journal of Multiphase Flow, 2005, 31(10-11):1220-1230.
[14] LIU S Y, CHAN T L. A coupled CFD-Monte Carlo method for simulating complex aerosol dynamics in turbulent flows[J]. Aerosol Science and Technology, 2017, 51(3):269-281.
[15] ZHANG R Y, KHALIZOV A, WANG L, et al. Nucleation and growth of nanoparticles in the atmosphere[J]. Chemical Reviews, 2012, 112(3):1957-2011.
[16] MERIKANTO J, DUPLISSY J, MÄÄTTÄNEN A, et al. Effect of ions on sulfuric acid-water binary particle formation:1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(4):1736-1751.
[17] ABDELSAMIE A, KRUIS F E, WIGGERS H, et al. Nanoparticle formation and behavior in turbulent spray flames investigated by DNS[J]. Flow, Turbulence and Combustion, 2020, 105(2):497-516.
[18] GARRICK S C. Growth mechanisms of nanostructured titania in turbulent reacting flows[J]. Journal of Nanotechnology, 2015, 2015:642014.
[19] CROWE C T. Multiphase flow handbook[M]. Boca Raton:CRC Press, 2005.
[20] THANH N T K, MACLEAN N, MAHIDDINE S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews, 2014, 114(15):7610-7630.
[21] 王甜蜜, 唐桂华. 银纳米颗粒消光特性的理论及实验研究[J]. 工程热物理学报, 2019, 40(3):639-643. WANG T M, TANG G H. Theoretical and experimental study on the extinction properties of silver nanoparticles[J]. Journal of Engineering Thermophysics, 2019, 40(3):639-643(in Chinese).
[22] 王鑫, 赵小虎, 王明珠, 等. 纳米颗粒增强环氧树脂抗原子氧剥蚀性能机理研究[J]. 航空学报, 2007, 28(1):207-212. WANG X, ZHAO X H, WANG M Z, et al. Investigation of atomic oxygen resistance improving mechanism for epoxy/silica nanocomposites[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):207-212(in Chinese).
[23] 徐孟嘉,刘博生,毕晓阳,等. 激光加工双级结构对Al/CFRPEEK接头组织及性能的影响[J/OL]. 航空学报, (2020-10-20)[2021-07-06]. https://kns.cnki.net/kcms/detail/11.1929.V.20201019.1449.012.html. XU M J, LIU B S, BI X Y, et al. Effect of laser textured dual-scale structure on microstructure and mechanical property of Al/CFRPEEK joint[J/OL]. Acta Aeronautica et Astronautica Sinica,(2020-10-20)[2021-07-06]. https://kns.cnki.net/kcms/detail/11.1929.V.20201019.1449.012.html (in Chinese).
[24] CHEN S, LOU Z, CHEN D, et al. Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device[J]. Science China Materials, 2016, 59(3):173-181.
[25] 阚伟民, 章先涛, 江浩庆, 等. 悬浮纳米颗粒对液体燃料着火点的影响[J]. 热科学与技术, 2015, 14(1):63-67. KAN W M, ZHANG X T, JIANG H Q, et al. Effect of suspended nano-sized particle on liquid fuel ignition[J]. Journal of Thermal Science and Technology, 2015, 14(1):63-67(in Chinese).
[26] SEAR R P. Nucleation:Theory and applications to protein solutions and colloidal suspensions[J]. Journal of Physics:Condensed Matter, 2007, 19(3):033101.
[27] BECKER R, DÖRING W. Kinetische behandlung der keimbildung in übersättigten d ämpfen[J]. Annalen Der Physik, 1935, 416(8):719-752.
[28] FRENKEL J. Statistical theory of condensation phenomena[J]. The Journal of Chemical Physics, 1939, 7(3):200-201.
[29] SCHENTER G K, KATHMANN S M, GARRETT B C. Dynamical nucleation theory:A new molecular approach to vapor-liquid nucleation[J]. Physical Review Letters, 1999, 82(17):3484-3487.
[30] LAMER V K, DINEGAR R H. Theory, production and mechanism of formation of monodispersed hydrosols[J]. Journal of the American Chemical Society, 1950, 72(11):4847-4854.
[31] WATZKY M A, FINKE R G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant:Slow, continuous nucleation and fast autocatalytic surface growth[J]. Journal of the American Chemical Society, 1997, 119(43):10382-10400.
[32] VEHKAMÄKI H, KULMALA M, LEHTINEN K E J, et al. Modelling binary homogeneous nucleation of water-sulfuric acid vapours:Parameterisation for high temperature emissions[J]. Environmental Science & Technology, 2003, 37(15):3392-3398.
[33] YIN Z Q, LIN J Z, ZHOU K, et al. Numerical simulation of the formation of pollutant nanoparticles in the exhaust twin-jet plume of a moving car[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8(4):535-543.
[34] YIN Z Q, LIN J Z. Numerical simulation of the formation of nanoparticles in an impinging twin-jet[J]. Journal of Hydrodynamics, Ser B, 2007, 19(5):533-541.
[35] YIN Z Q, LIN J Z, ZHOU K. Research on nucleation and coagulation of nanoparticles in parallel twin jets[J]. Applied Mathematics and Mechanics, 2008, 29(2):153-162.
[36] YU M Z, LIN J Z, CHAN T. Numerical simulation of nanoparticle synthesis in diffusion flame reactor[J]. Powder Technology, 2008, 181(1):9-20.
[37] YU M Z, LIN J Z, CHAN T. Effect of precursor loading on non-spherical TiO2 nanoparticle synthesis in a diffusion flame reactor[J]. Chemical Engineering Science, 2008, 63(9):2317-2329.
[38] YU M Z, LIN J Z, CHAN T. Numerical simulation for nucleated vehicle exhaust particulate matters via the TEMOM/LES method[J]. International Journal of Modern Physics C, 2009, 20(3):399-421.
[39] YU M Z, LIN J Z. Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model[J]. International Journal of Heat and Mass Transfer, 2010, 53(4):635-644.
[40] LIN J Z, LIU Y H. Nanoparticle nucleation and coagulation in a mixing layer[J]. Acta Mechanica Sinica, 2010, 26(4):521-529.
[41] CHAN T, ZHOU K, LIN J Z, et al. Vehicular exhaust gas-to-nanoparticle conversion and concentration distribution in the vehicle wake region[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(8):581-594.
[42] CHAN T, LIU S Y, YUE Y. Nanoparticle formation and growth in turbulent flows using the bimodal TEMOM[J]. Powder Technology, 2018, 323:507-517.
[43] MEYER C J, DEGLON D A. Particle collision modeling-A review[J]. Minerals Engineering, 2011, 24(8):719-730.
[44] PARK S H, KRUIS F E, LEE K W, et al. Evolution of particle size distributions due to turbulent and Brownian coagulation[J]. Aerosol Science and Technology, 2002, 36(4):419-432.
[45] ZAICHIK L I, SOLOV'EV A L. Collision and coagulation nuclei under conditions of Brownian and turbulent motion of aerosol particles[J]. High Temperature, 2002, 40(3):422-427.
[46] WANG Y M, LIN J Z. The oblique collision efficiency of nanoparticles at different angles in Brownian coagulation[J]. Computers & Mathematics with Applications, 2011, 61(8):1917-1922.
[47] WANG Y M, LIN J Z. Collision efficiency of two nanoparticles with different diameters in Brownian coagulation[J]. Applied Mathematics and Mechanics, 2011, 32(8):1019-1028.
[48] FENG Y, LIN J Z. The collision efficiency of spherical dioctyl phthalate aerosol particles in the Brownian coagulation[J]. Chinese Physics B, 2008, 17(12):4547-4553.
[49] LIN J Z, WANG Y M. Effects of inter-particle interactions and hydrodynamics on the Brownian coagulation rate of polydisperse nanoparticles[J]. Modern Physics Letters B, 2012, 26(3):1150010.
[50] WANG Y M, LIN J Z, FENG Y. The central oblique collision efficiency of spherical nanoparticles in the Brownian coagulation[J]. Modern Physics Letters B, 2010, 24(14):1523-1531.
[51] MVLLER H. Zur allgemeinen theorie ser raschen koagulation[J]. Kolloidchemische Beihefte, 1928, 27:223-250.
[52] YU M Z, LIN J Z. Taylor-expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime[J]. Journal of Aerosol Science, 2009, 40(6):549-562.
[53] CAMP T R, STEIN P C. Velocity gradients and internal work in fluid motion[J]. Journal of the Boston Society of Civil Engineers, 1943, 85:219-237.
[54] SAFFMAN P G, TURNER J S. On the collision of drops in turbulent clouds[J]. Journal of Fluid Mechanics, 1956, 1(1):16-30.
[55] FLESCH J C, SPICER P T, PRATSINIS S E. Laminar and turbulent shear-induced flocculation of fractal aggregates[J]. AIChE Journal, 1999, 45(5):1114-1124.
[56] 冯鹏, 盛虎, 周虎, 等. 亚微米颗粒物湍流团聚数值模拟研究[J]. 洁净煤技术, 2020, 26(5):181-187. FENG P, SHENG H, ZHOU H, et al. Numerical simulation on the characteristics of submicron particle turbulence agglomeration[J]. Clean Coal Technology, 2020, 26(5):181-187(in Chinese).
[57] YU Z K, BU S, ZHANG L, et al. Turbulent coagulation of micron and submicron particles in swirling flow[J]. Separation and Purification Technology, 2020, 248:117098.
[58] YU M Z, LIN J Z, JIN H H, et al. The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion[J]. Journal of Nanoparticle Research, 2011, 13(5):2007-2020.
[59] YU M Z, LIN J Z. Taylor series expansion scheme applied for solving population balance equation[J]. Reviews in Chemical Engineering, 2018, 34(4):561-594.
[60] YU M Z, LIN J Z. Solution of the agglomerate Brownian coagulation using Taylor-expansion moment method[J]. Journal of Colloid and Interface Science, 2009, 336(1):142-149.
[61] YU M Z, LIN J Z, CHAN T. A new moment method for solving the coagulation equation for particles in Brownian motion[J]. Aerosol Science and Technology, 2008, 42(9):705-713.
[62] LIN J Z, CHEN Z L. A modified TEMOM model for Brownian coagulation of nanoparticles based on the asymptotic solution of the sectional method[J]. Science China Technological Sciences, 2013, 56(12):3081-3092.
[63] CHEN Z L, LIN J Z, YU M Z. A direct expansion method of moments for Brownian coagulation[J]. Physica Scripta, 2014, 89(12):125204.
[64] CHEN Z L, LIN J Z, YU M Z. Direct expansion method of moments for nanoparticle Brownian coagulation in the entire size regime[J]. Journal of Aerosol Science, 2014, 67:28-37.
[65] YU M Z, LIN J Z. Hybrid method of moments with interpolation closure-Taylor-series expansion method of moments scheme for solving the Smoluchowski coagulation equation[J]. Applied Mathematical Modelling, 2017, 52:94-106.
[66] GARRICK S C. Effects of turbulent fluctuations on nanoparticle coagulation in shear flows[J]. Aerosol Science and Technology, 2011, 45(10):1272-1285.
[67] DAS S, GARRICK S C. The effects of turbulence on nanoparticle growth in turbulent reacting jets[J]. Physics of Fluids, 2010, 22(10):103303.
[68] LIN J Z,LIU S, CHAN T. Nanoparticle migration in a fully developed turbulent pipe flow considering the particle coagulation[J]. Chinese Journal of Chemical Engineering, 2012, 20(4):679-685.
[69] LIN J Z, CHEN Z L. Effect of coagulation and diffusion on nanoparticle distribution in a fully developed turbulent boundary layer[J]. Chinese Physics Letters, 2012, 29(5):054701.
[70] LIN J Z, PAN X J, YIN Z Q, et al. Solution of general dynamic equation for nanoparticles in turbulent flow considering fluctuating coagulation[J]. Applied Mathematics and Mechanics, 2016, 37(10):1275-1288.
[71] YANG H L, LIN J Z, CHAN T. Effect of fluctuating aerosol concentration on the aerosol distributions in a turbulent jet[J]. Aerosol and Air Quality Research, 2020, 20(7):1629-1639.
[72] SHI R F, LIN J Z, YANG H L, et al. Distribution of non-spherical nanoparticles in turbulent flow of ventilation chamber considering fluctuating particle number density[J]. Applied Mathematics and Mechanics, 2021, 42(3):317-330.
[73] BELUT E. A new experimental dataset to validate CFD models of airborne nanoparticles agglomeration[C]//9th International Conference on Multiphase Flow, 2016.
[74] GAN F J, LIN J Z, YU M Z. Particle size distribution in a planar jet flow under-going shear-induced coagulation and breakage[J]. Journal of Hydrodynamics, Ser B, 2010, 22(4):445-455.
[75] BARTHELMES G, PRATSINIS S E, BUGGISCH H. Particle size distributions and viscosity of suspensions undergoing shear-induced coagulation and fragmentation[J]. Chemical Engineering Science, 2003, 58(13):2893-2902.
[76] MARCHISIO D L, DENNIS VIGIL R, FOX R O. Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems[J]. Chemical Engineering Science, 2003, 58(15):3337-3351.
[77] MARCHISIO D L, DENNIS VIGIL R, FOX R O. Quadrature method of moments for aggregation-breakage processes[J]. Journal of Colloid and Interface Science, 2003, 258(2):322-334.
[78] XIE L, RIELLY C D, ÖZCAN-TAŞKIN G. Break-up of nanoparticle agglomerates by hydrodynamically limited processes[J]. Journal of Dispersion Science and Technology, 2008, 29(4):573-579.
[79] PANDYA J D, SPIELMAN L A. Floc breakage in agitated suspensions:Theory and data processing strategy[J]. Journal of Colloid and Interface Science, 1982, 90(2):517-531.
[80] HILL P J, NG K M. New discretization procedure for the breakage equation[J]. AIChE Journal, 1995, 41(5):1204-1216.
[81] SERRA T, CASAMITJANA X. Effect of the shear and volume fraction on the aggregation and breakup of particles[J]. AIChE Journal, 1998, 44(8):1724-1730.
[82] YUAN F Y, TU C X, YU J F, et al. High-pressure dispersion of nanoparticle agglomerates through a continuous aerosol disperser[J]. Applied Nanoscience, 2019, 9(8):1857-1868.
[83] BAŁDYGA J, ORCIUCH W, MAKOWSKI Ł, et al. Break up of nano-particle clusters in high-shear devices[J]. Chemical Engineering and Processing:Process Intensification, 2007, 46(9):851-861.
[84] LAI A C K, NAZAROFF W W. Modeling indoor particle deposition from turbulent flow onto smooth surfaces[J]. Journal of Aerosol Science, 2000, 31(4):463-476.
[85] CHEN F Z, LAI A C K. An Eulerian model for particle deposition under electrostatic and turbulent conditions[J]. Journal of Aerosol Science, 2004, 35(1):47-62.
[86] CHEN F Z, YU S C M, LAI A C K. Modeling particle distribution and deposition in indoor environments with a new drift-flux model[J]. Atmospheric Environment, 2006, 40(2):357-367.
[87] 付峥嵘. 气溶胶颗粒在通风空调风管系统中沉降规律的研究[D]. 长沙:湖南大学, 2007. FU Z R. Research on aerosol particle deposition characteristics in ventilation duct systems[D]. Changsha:Hunan University, 2007(in Chinese).
[88] ZAICHIK L I, DROBYSHEVSKY N I, FILIPPOV A S, et al. A diffusion-inertia model for predicting dispersion and deposition of low-inertia particles in turbulent flows[J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3):154-162.
[89] TALEBIZADEH P, RAHIMZADEH H, AHMADI G, et al. Study of nano-particle deposition in tubular pipes under turbulent condition[C]//10th Australasian Heat & Mass Transfer Conference, 2016.
[90] GUICHARD R, BELUT E, NIMBERT N, et al. Evaluation of a moments-based formulation for the transport and deposition of small inertia aerosols[J]. The Journal of Computational Multiphase Flows, 2014, 6(4):407-418.
[91] HOLMBERG S, LI Y G. Modelling of the indoor environment-Particle dispersion and deposition[J]. Indoor Air, 1998, 8(2):113-122.
[92] GAO N P, NIU J L. Modeling particle dispersion and deposition in indoor environments[J]. Atmospheric Environment, 2007, 41(18):3862-3876.
[93] MEHEL A, SAGOT B, TANIōRE A, et al. On the mutual effect of the turbulent dispersion model and thermophoresis on nanoparticle deposition[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(6):417-425.
[94] LIN J Z, YIN Z Q, LIN P F, et al. Distribution and penetration efficiency of nanoparticles between 8-550 nm in pipe bends under laminar and turbulent flow conditions[J]. International Journal of Heat and Mass Transfer, 2015, 85:61-70.
[95] LIN J Z, SHI R F, YUAN F Y, et al. Distribution and penetration efficiency of cylindrical nanoparticles in turbulent flows through a curved tube[J]. Aerosol Science and Technology, 2020, 54(11):1255-1269.
[96] OUNIS H, AHMADI G, MCLAUGHLIN J B. Brownian particle deposition in a directly simulated turbulent channel flow[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(6):1427-1432.
[97] WU Z, YOUNG J B. Deposition of small particles from turbulent flows[C]//Proceedings of ASME 2003 Heat Transfer Summer Conference. New York:ASME, 2008:731-741.
[98] MINA E M, GHORBANIASL G, LACOR C. Study of nanoparticles deposition in a human upper airway model using a dynamic turbulent Schmidt number[J]. Ain Shams Engineering Journal, 2018, 9(4):2389-2398.
文章导航

/