电子电气工程与控制

微小型四旋翼无人机垂面栖停轨迹规划与控制

  • 孙杨 ,
  • 昌敏 ,
  • 白俊强
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 西北工业大学 无人系统技术研究院, 西安 710072

收稿日期: 2021-05-05

  修回日期: 2021-05-28

  网络出版日期: 2021-07-09

Trajectory planning and control for micro-quadrotor perching on vertical surface

  • SUN Yang ,
  • CHANG Min ,
  • BAI Junqiang
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-05-05

  Revised date: 2021-05-28

  Online published: 2021-07-09

摘要

微小型四旋翼无人机以轻小便携、灵敏机动等优势在军事、民用与科研领域获得广泛应用。但无人机小型化带来优势的同时也必然导致储能空间急剧减缩, 引发续航时间缩短、使用效能恶化。源于鸟类栖停行为的垂面栖停机动是当下微小型四旋翼无人机续航延时的有效策略, 垂面栖停机动是利用无人机的机动能力使无人机在栖停装置配合下能够像鸟类栖停一样降落在垂直墙面上。当无人机栖停在垂直墙面时, 可依靠栖停装置与垂面间的相互作用力来平衡重力和力矩。无人机垂面栖停无需开启电机, 因此, 可以达到减小能量消耗、延长任务时间的目的。垂面栖停机动涉及较为复杂的运动控制问题, 本文采用"轨迹规划+跟踪控制"的方法实现四旋翼无人机垂面栖停过程。首先, 对四旋翼无人机进行动力学建模并对垂面栖停的研究维度限制在二维的纵向运动。然后, 基于纵向运动模型, 建立了考虑栖停运动约束的轨迹规划方法。最后, 为了解决实际飞行中存在的外部扰动与内部非精确参数等因素的影响, 采用几何跟踪控制方法并根据栖停问题特征对该方法进行改进。Simulink仿真结果表明, 改进跟踪控制方法能够很好地解决垂面栖停问题, 实现对预设轨迹的跟踪控制。

本文引用格式

孙杨 , 昌敏 , 白俊强 . 微小型四旋翼无人机垂面栖停轨迹规划与控制[J]. 航空学报, 2022 , 43(9) : 325756 -325756 . DOI: 10.7527/S1000-6893.2021.25756

Abstract

Micro-quadrotors have wide applications in the areas of military use, civil use and scientific research due to their tiny size, agility and portability. However, miniaturization of the UAV reduces the space of energy storge, leading to loss of endurance and deterioration of deployment performance. Perching maneuvering, originating from birds perching, is a hot topic for exploring the solution for extending the endurance of micro quadrotors. This method aims to take the advantage of maneuverability to achieve perching the quadrotor on the vertical surface with the help of perching mechanism. When perching, the interaction force from the vertical surface can afford the gravity of quadrotor, and there is no need to maintain the aerodynamics. Therefore, motors can be turned off, and the energy consumption would be much less than that in flight. Perching maneuvering involves complex problems such as motion control. In this paper, perching control is solved by trajectory generation and track control. First, a dynamics model is built to describe the motion of the perching quadrotor, and the model is further simplified into a longitudinal model. Then, open-loop trajectory is generated and the initial state is set with reference to the perching restrictions. Finally, the geometry control method is applied to achieve track control, and the method is also modified to make the track more precisely. Simulink experiments verify the effectiveness of the proposed method.

参考文献

[1] THUSOO R, JAIN S, BANGIA S. Quadrotors in the present era: A review[J]. Information Technology in Industry, 2021, 9(1): 164-178.
[2] GHAZBI S N, AGHLI Y, ALIMOHAMMADI M, et al. Quadrotors unmanned aerial vehicles: A review[J]. International Journal on Smart Sensing and Intelligent Systems, 2016, 9(1): 309-333.
[3] GUPTE S, MOHANDAS P I T, CONRAD J M. A survey of quadrotor unmanned aerial vehicles[C]//2012 Proceedings of IEEE Southeastcon. Piscataway: IEEE Press, 2012: 1-6.
[4] MULGAONKAR Y, WHITZER M, MORGAN B, et al. Power and weight considerations in small, agile quadrotors[C]//Micro and Nanotechnology Sensors, Systems, and Applications Ⅵ. Baltimore: International Society for Optics and Photonics, 2014, 9083: 376-391.
[5] MUSA S. Techniques for quadcopter modeling and design: A review[J]. Journal of Unmanned System Technology, 2018, 5(3): 66-75.
[6] BOUABDALLAH S, MURRIERI P, SIEGWART R. Design and control of an indoor micro quadrotor[C]//IEEE International Conference on Robotics and Automation, 2004. Piscataway: IEEE Press, 2004: 4393-4398.
[7] FANG Z, GAO W. Adaptive integral backstepping control of a micro-quadrotor[C]//2011 2nd International Conference on Intelligent Control and Information Processing, 2011, 2: 910-915.
[8] BOUABDALLAH S, SIEGWART R. Backstepping and sliding-mode techniques applied to an indoor micro quadrotor[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2005: 2247-2252.
[9] KUSHLEYEV A, MELLINGER D, POWERS C, et al. Towards a swarm of agile micro quadrotors[J]. Autonomous Robots, 2013, 35(4): 287-300.
[10] AMIN R, LI A J, SHAMSHIRBAND S. A review of quadrotor UAV: control methodologies and performance evaluation[J]. International Journal of Automation and Control, 2016, 10(2): 87-103.
[11] SIKKEL L N C, DE CROON G C H E, DE WAGTER C, et al. A novel online model-based wind estimation approach for quadrotor micro air vehicles using low cost MEMS IMUs[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2016: 2141-2146.
[12] HU S F, MA J C, MENG F L. Research on the micro-inertial navigation system based on MEMS sensors[J]. Computer Measurement & Control, 2009, 17(5): 1015-1018 (in Chinese). 胡士峰, 马建仓, 孟凡路. 基于MEMS传感器的微惯性导航系统研究[J]. 计算机测量与控制, 2009, 17(5): 1015-1018.
[13] NAGATY A, SAEEDI S, THIBAULT C, et al. Control and navigation framework for quadrotor helicopters[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1): 1-12.
[14] GHADIOK V, GOLDIN J, REN W. On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor[J]. Autonomous Robots, 2012, 33(1): 41-68.
[15] DUNKLEY O, ENGEL J, STURM J, et al. Visual-inertial navigation for a camera-equipped 25 g nano-quadrotor[C]//IROS2014 Aerial Open Source Robotics Workshop, 2014.
[16] SCHMID K, LUTZ P, TOMIC' T, et al. Autonomous vision-based micro air vehicle for indoor and outdoor navigation[J]. Journal of Field Robotics, 2014, 31(4): 537-570.
[17] DRYANOVSKI I, VALENTI R G, XIAO J Z. An open-source navigation system for micro aerial vehicles[J]. Autonomous Robots, 2013, 34(3): 177-188.
[18] MEHANOVIC D, BASS J, COURTEAU T, et al. Autonomous thrust-assisted perching of a fixed-wing UAV on vertical surfaces[C]//Conference on Biomimetic and Biohybrid Systems, 2017: 302-314.
[19] MOORE J, CORY R, TEDRAKE R. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees[J]. Bioinspiration & Biomimetics, 2014, 9(2): 025013.
[20] THOMAS J, POPE M, LOIANNO G, et al. Aggressive flight with quadrotors for perching on inclined surfaces[J]. Journal of Mechanisms and Robotics, 2016, 8(5): 051007.
[21] DESBIENS A L, CUTKOSKY M R. Landing and perching on vertical surfaces with microspines for small unmanned air vehicles[J]. Journal of Intelligent and Robotic Systems, 2010, 57(1): 313-327.
[22] KALANTARI A, MAHAJAN K, RUFFATTO D, et al. Autonomous perching and take-off on vertical walls for a quadrotor micro air vehicle[C]//2015 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2015: 4669-4674.
[23] MELLINGER D, SHOMIN M, KUMAR V. Control of quadrotors for robust perching and landing[C]//Proceedings of the International Powered Lift Conference, 2010: 205-225.
[24] POPE M T, CUTKOSKY M R. Thrust-assisted perching and climbing for a bioinspired UAV[C]//Conference on Biomimetic and Biohybrid Systems, 2016: 288-296.
[25] POPE M T, KIMES C W, JIANG H, et al. A multimodal robot for perching and climbing on vertical outdoor surfaces[J]. IEEE Transactions on Robotics, 2017, 33(1): 38-48.
[26] HAWKES E W, CHRISTENSEN D L, EASON E V, et al. Dynamic surface grasping with directional adhesion[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2013: 5487-5493.
[27] WOPEREIS H W, VAN DER MOLEN T D, POST T H, et al. Mechanism for perching on smooth surfaces using aerial impacts[C]//2016 IEEE International Symposium on Safety, Security, and Rescue Robotics. Piscataway: IEEE Press, 2016: 154-159.
[28] WOPEREIS H W, ELLERY D H, POST T H, et al. Autonomous and sustained perching of multirotor platforms on smooth surfaces[C]//2017 25th Mediterranean Conference on Control and Automation (MED). Piscataway: IEEE Press, 2017: 1385-1391.
[29] THOMAS J, LOIANNO G, POPE M, et al. Planning and control of aggressive maneuvers for perching on inclined and vertical surfaces[C]//Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2016.
[30] MELLINGER D, MICHAEL N, KUMAR V. Trajectory generation and control for precise aggressive maneuvers with quadrotors[J]. The International Journal of Robotics Research, 2012, 31(5): 664-674.
文章导航

/