材料工程与机械制造

考虑伴生转动的大行程柔性微定位平台

  • 曹毅 ,
  • 孟刚 ,
  • 居勇健 ,
  • 徐伟胜
展开
  • 1. 江南大学 机械工程学院, 无锡 214122;
    2. 江苏省食品先进制造装备技术重点实验室, 无锡 214122

收稿日期: 2021-03-15

  修回日期: 2021-07-12

  网络出版日期: 2021-07-09

基金资助

江苏省"六大人才高峰"计划(ZBZZ-012);高等学校学科创新引智计划(B18027);江苏省高校优秀科技创新团队基金(2019SJK07);江苏省研究生科研与实践创新计划(KYCX20_1925)

Large-stroke compliant micro-positioning stage considering parasitic rotation

  • CAO Yi ,
  • MENG Gang ,
  • JU Yongjian ,
  • XU Weisheng
Expand
  • 1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
    2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, China

Received date: 2021-03-15

  Revised date: 2021-07-12

  Online published: 2021-07-09

Supported by

Six Talent Peaks Project in Jiangsu Province (ZBZZ-012); Higher Education Discipline Innovation Project (B18027); Jiangsu Provincial Science and Technology Innovation Team Foundation (2019SJK07); Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX20_1925)

摘要

为研究大行程柔性微定位平台运动过程中伴生转动对其定位精度的影响,首先基于新型柔性运动副设计了一种运动解耦、低伴生转动的5-PPPR型柔性微定位平台;其次,基于矩阵法、线弹性梁变形理论、拉格朗日方程分别对其静、动态特性进行了理论分析,并对运动副及微定位平台的伴生转角进行了理论建模,继而探究了考虑伴生转动情况下平台输入、输出位移之间的关系;然后,通过有限元仿真对上述理论模型进行了验证,结果表明平台输入刚度、伴生转角及固有频率的理论与仿真值最大相对误差分别为2.20%、1.23%及1.98%,且考虑伴生转动情况下,x轴方向输出位移理论误差与不考虑伴生转动情况相比降低了94.63%;最后,对柔性微定位平台进行了灵敏度分析及参数优化,结果表明优化后微定位平台在相同驱动条件下伴生转角及丢失运动分别降低28.8%和21.5%,进一步提升了微定位平台的定位精度。

本文引用格式

曹毅 , 孟刚 , 居勇健 , 徐伟胜 . 考虑伴生转动的大行程柔性微定位平台[J]. 航空学报, 2022 , 43(7) : 425498 -425498 . DOI: 10.7527/S1000-6893.2021.25498

Abstract

In order to investigate the influence of parasitic rotation on the positioning precision of large-stroke compliant micro-positioning stage, a novel 5-PPPR compliant micro-positioning stage with motion decoupling and low parasitic rotation is designed based on a novel compliant kinematic joint firstly. Secondly, based on matrix method, linear elastic beam deformation theory and the Lagrange's equation, theoretical analysis of both static and dynamic characteristics of the stage are carried out, respectively. Meanwhile, parasitic rotation angles of the kinematic joint and micro-positioning stage are modeled in theory. Furthermore, the relationship between the input and output displacements of the stage is explored by taking the parasitic rotation into consideration. Then, the theoretical models are verified by finite element analysis, the results show that the maximum relative errors of the theoretical and simulated values of the input stiffness, parasitic rotation angle, and natural frequency are 2.20%, 1.23%, and 1.98%, respectively. And the theoretical error of the output displacement along x-axis is reduced by 94.63% with the parasitic rotation considered. Finally, the sensitivity analysis and parameter optimization are carried out, the results show that the parasitic rotation angle and lost motion of the optimized stage are reduced by 28.8% and 21.5% respectively under the same driving displacement, which further improves the positioning precision of the stage.

参考文献

[1] HOWELL L L. Compliant mechanisms[M]. New York:John Wiley and Sons, 2001.
[2] 孟光,韩亮亮,张崇峰.空间机器人研究进展及技术挑战[J].航空学报,2021, 42(1):523963. MENG G, HAN L L, ZHANG C F. Research progress and technical challenges of space robot[J]. Acta Aeronautica et Astronautica Sinica,2021, 42(1):523963(in Chinese).
[3] TONG X X, GE W J, YUAN Z Y, et al. Integrated design of topology and material for composite morphing trailing edge based compliant mechanism[J]. Chinese Journal of Aeronautics, 2021, 34(5):331-340.
[4] AKILIAN M, FOREST C R, SLOCUM A H, et al. Thin optic constraint[J]. Precision Engineering, 2007, 31(2):130-138.
[5] 刘璟龙,张崇峰,邹怀武,等.基于干扰控制器的柔性空间机器人在轨精细操作控制方法[J].航空学报, 2021, 42(1):523899. LIU J L, ZHANG C F, ZOU H W, et al. On-orbit precise operation control method for flexible joint space robots based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):523899(in Chinese).
[6] DONG W, SUN L N, DU Z J. Design of a precision compliant parallel positioner driven by dual piezoelectric actuators[J]. Sensors and Actuators A:Physical, 2007, 135(1):250-256.
[7] TIAN Y L, HU M, NI Z Y, et al. Analysis of parasitic motion in parallelogram compliant mechanism[J]. Precision Engineering, 2010, 34(1):133-138.
[8] AWTAR S, USTICK J, SEN S. An XYZ parallel kinematic flexure mechanism with geometrically decoupled degrees of freedom[J]. Journal of Mechanisms and Robotics, 2013, 5(1):015001.
[9] HAO G B. Towards the design of monolithic decoupled XYZ compliant parallel mechanisms for multi-function applications[J]. Mechanical Sciences, 2013,4(2):291-302.
[10] HAO G B, LI H Y. Design of 3-legged XYZ compliant parallel manipulators with minimised parasitic rotations[J]. Robotica, 2015, 33(4):787-806.
[11] LI Y M, WU Z G. Design, analysis and simulation of a novel 3-DoF translational micromanipulator based on the PRB model[J]. Mechanism and Machine Theory, 2016, 100:235-258.
[12] KONG X W, HAO G B. Design and modeling of a large-range modular XYZ compliant parallel manipulator using identical spatial modules[J]. Journal of Mechanisms and Robotics, 2012, 4(2):1-10.
[13] LIN H R, CHENG C H, HUNG S K. Design and quasi-static characteristics study on a planar piezoelectric nanopositioner with ultralow parasitic rotation[J]. Mechatronics, 2015, 31(1):180-188.
[14] KIM D, GWEON D G, SONG I, et al. Optimal design of a flexure hinge-based XYZ atomic force microscopy scanner for minimizing Abbe errors[J]. Review of Scientific Instruments, 2005, 76(7):376-391.
[15] 李海洋,郝广波,于靖军,等.空间平动柔性并联机构的系统设计方法研究[J].机械工程学报, 2018, 54(13):57-65. LI H Y, HAO G B, YU J J, et al. Systematic approach to the design of spatial translational compliant parallel mechanisms[J]. Journal of Mechanical Engineering, 2018, 54(13):57-65(in Chinese).
[16] 曹毅,孟刚.基于柔性杆的高精度柔性微定位平台:中国, 201910991939.1[P]. 2020-01-14. CAO Y, MENG G. High precision compliant micro-positioning stage based on compliant beams:China, 201910991939.1[P]. 2020-01-14(in Chinese).
[17] KOSEKI Y, TANIKAWA T, KOYACHI N, et al. Kinematic analysis of translational 3-DoF micro parallel mechanism using matrix method[J]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000, 1(3):786-792.
[18] TANG H, LI Y M. Design analysis and test of a novel 2-DoF nanopositioning system driven by dual mode[J]. IEEE Transactions on Robotics, 2013, 29(3):650-662.
[19] SU H J, SHI H, YU J J. A symbolic formulation for analytical compliance analysis and synthesis of flexure mechanisms[J]. Journal of Mechanical Design, 2012, 134(5):051009-1-051009-9.
[20] LUO Y Q, LIU W Q. Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate[J]. Mechanism and Machine Theory, 2014, 80:151-165.
[21] CHOI K B. Dynamics of a compliant mechanism based on flexure hinges[J]. Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science, 2005, 219(c2):225-235.
[22] HERPE X, WALKER R, DUNNIGAN M, et al. On a simplified nonlinear analytical model for the characterisation and design optimization of a compliant XY micro-motion stage[J]. Robotics and Computer Integrated Manufacturing, 2018, 49(1):66-76.
文章导航

/