论文

基于特征模型的失效航天器消旋控制

  • 李超 ,
  • 何英姿 ,
  • 胡勇
展开
  • 1. 北京控制工程研究所, 北京 100190;
    2. 空间智能控制技术重点实验室, 北京 100094

收稿日期: 2021-03-12

  修回日期: 2021-05-05

  网络出版日期: 2021-07-09

基金资助

国家自然科学基金(62003034)

Characteristic model-based detumbling control for failure spacecraft

  • LI Chao ,
  • HE Yingzi ,
  • HU Yong
Expand
  • 1. Beijing Institute of Control Engineering, Beijing 100190, China;
    2. Science and Technology on Space Intelligent Control Laboratory, Beijing 100094, China

Received date: 2021-03-12

  Revised date: 2021-05-05

  Online published: 2021-07-09

Supported by

National Natural Science Foundation of China (62003034)

摘要

失效航天器一般有复杂的运动和较大的角速度,采用机械臂直接抓捕目标容易导致非预期碰撞,如果先采用接触式消旋操作降低目标角速度,会大大降低服务卫星抓捕目标的难度。针对空间翻滚非合作目标的接触式消旋控制存在接触动力学模型不确定性的问题,提出了一种基于特征模型的自适应控制方法。首先通过接触式消旋的物理机理分析,建立消旋系统动力学模型;进一步在动力学特性分析基础上构建描述接触碰撞后目标角速度的特征模型,并确定模型参数范围;然后基于该模型设计黄金分割自适应控制律。仿真结果表明,该方法有效克服了消旋过程中接触碰撞模型存在的不确定性,并且消旋速度快且消旋后的残余角速度小。

本文引用格式

李超 , 何英姿 , 胡勇 . 基于特征模型的失效航天器消旋控制[J]. 航空学报, 2021 , 42(11) : 525472 -525472 . DOI: 10.7527/S1000-6893.2021.25472

Abstract

Failure spacecraft generally have complex motions and large angular velocities. Using a robotic arm to directly capture the target is likely to cause unexpected collisions. If the contact detumbling operation is first used to reduce the target angular velocity, it will greatly reduce the difficulty for the service satellite to capture the target. Aiming at the uncertainty problems in contact detumbling of rolling uncooperative space targets, this paper proposed an adaptive control method based on the characteristic model. First of all, the mechanism of contact detumbling is analyzed and a dynamic model of the system is established. Then the characteristic modeling of the contact detumbling system was performed and the range of characteristic parameters was obtained. Finally, the golden section adaptive controller was designed based on the model. The simulation results show that the method effectively overcomes the uncertainty of the detumbling contact collision model, and the detumbling process is fast with small residual angular velocity.

参考文献

[1] SHAN M H, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80:18-32.
[2] KESSLER D J, COUR-PALAIS B G. Collision frequency of artificial satellites:The creation of a debris belt[J]. Journal of Geophysical Research Space Physics, 1978, 83(6):2637.
[3] LIOU J C, JOHNSON N L, HILL N M. Controlling the growth of future LEO debris populations with active debris removal[J]. Acta Astronautica, 2010, 66(5-6):648-653.
[4] 邱爽. 空间非合作目标状态估计与消旋方案设计[D]. 哈尔滨:哈尔滨工业大学, 2018:1-2. QIU S. State estimation and de-tumbling of space non-cooperative targets[D]. Harbin:Harbin Institute of Technology, 2018:1-2(in Chinese).
[5] 王哲. 面向大型旋转空间碎片捕获的接触式消旋技术研究[D]. 哈尔滨:哈尔滨工业大学, 2018:4-5. WANG Z. Contact detumbling oftumling large space debris capture[D]. Harbin:Harbin Institute of Technology, 2018:4-5(in Chinese).
[6] 马广富, 郭延宁, 邱爽, 等.空间非合作目标消旋技术研究现状总结与展望[J]. 飞控与探测, 2018, 1(1):26-33. MA G F, GUO Y N, QIU S, et al. Summary and prospect of de-tumbling methods of space noncooperative targets[J]. Flight Control & Detection, 2018, 1(1):26-33(in Chinese).
[7] 路勇, 刘晓光, 周宇, 等.空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):021302. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021302(in Chinese).
[8] NISHIDA S I, KAWAMOTO S. Strategy for capturing of a tumbling space debris[J]. Acta Astronautica, 2011, 68(1-2):113-120.
[9] LIU Y Q, YU Z W, LIU X F, et al. Active detumbling technology for high dynamic non-cooperative space targets[J]. Multibody System Dynamics, 2019, 47(1):21-41.
[10] LIU Y Q, YU Z W, LIU X F, et al. Active detumbling technology for noncooperative space target with energy dissipation[J]. Advances in Space Research, 2019, 63(5):1813-1823.
[11] 段文杰, 朱志斌, 徐拴锋. 失效卫星在轨消旋接触控制研究[C]//第三十六届中国控制会议论文集. 2017:239-244. DUAN W J, ZHU Z B, XU S F. Research on dynamics and control of on-orbit disabled satellites for positive tumbling breaking[C]//Proceedings of the 36th Chinese Control Conference. 2017:239-244(in Chinese).
[12] DUAN W J, ZHANG H B, WANG D Y. Experiment-based contact dynamic modeling for detumbling a disable satellite[C]//4th International Academy of Astronautics Conference on Dynamics and Control of Space Systems. 2018:2053-2060.
[13] 吴昊, 孙晟昕, 魏承, 等. 基于机器人柔性毛刷的空间翻滚目标消旋[J]. 航空学报, 2019, 40(5):422587. WU H, SUN S X, WEI C, et al. Tumbling target despun based on robotic flexible brush[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):422587(in Chinese).
[14] WANG X L, ZHOU Z C, CHEN Y J, et al. Optimal contact control for space debris detumbling and nutation damping[J]. Advances in Space Research, 2020, 66(4):951-962.
[15] 孙晟昕, 吴昊, 魏承, 等. 基于柔性毛刷的自旋卫星的消旋动力学分析[J]. 中国科学:物理学力学天文学, 2019, 49(2):139-146. SUN S X, WU H, WEI C, et al. Dynamic analysis of rotating satellite de-spun using flexible brush[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(2):139-146(in Chinese).
[16] 段文杰, 张海博, 徐拴锋. 一种基于力矩分析的失效卫星接触消旋方法[C]//第三十九届中国控制会议论文集. 2020:834-839. DUAN W J, ZHANG H B, XU S F. A contact detumbling method for disabled satellites based on torque analyzing[C]//Proceedings of the 39th Chinese Control Conference. 2020:834-839(in Chinese).
[17] 吴宏鑫, 胡军. 特征建模理论、方法和应用[M]. 北京:国防工业出版社, 2019:7-8. WU H X, HU J. Theory, methods and applications of characteristic modeling[M]. Beijing:National Defense Industry Press, 2019:7-8(in Chinese).
[18] SUN D Q. Stability analysis of golden-section adaptive control systems based on the characteristic model[J]. Science China Information Sciences, 2017, 60(9):1-18.
[19] 杨扬, 吴宏鑫. 基于特征模型的全系数自适应控制系统稳定性研究[J]. 航天控制, 2007, 25(5):3-6. YANG Y, WU H X. Study on the stability of characteristic model based all-coefficient adaptive control system[J]. Aerospace Control, 2007, 25(5):3-6(in Chinese).
[20] 孟斌. 基于特征模型的高超声速飞行器自适应控制研究进展[J]. 控制理论与应用, 2014, 31(12):1640-1649. MENG B. Review of the characteristic model-based hypersonic flight vehicles adaptive control[J]. Control Theory & Applications, 2014, 31(12):1640-1649(in Chinese).
[21] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京:北京航空航天大学出版社, 1998:155-160. ZHANG R W. Control and orbit and attitude dynamics of satellite[M]. Beijing:Beihang University Press, 1998:155-160(in Chinese).
[22] MENG B, WU H X. On characteristic modeling of a class of flight vehicles' attitude dynamics[J]. Science China Technological Sciences, 2010, 53(8):2074-2080.
[23] 吴宏鑫, 胡军, 解永春. 基于特征建模的智能自适应控制[M]. 北京:中国科学技术出版社, 2008:79-80. WU H X, HU J, XIE Y C. Intelligent adaptive control based on characteristic model[M]. Beijing:China Science and Technology Press, 2008:79-80(in Chinese).
[24] 解永春, 吴宏鑫. 黄金分割在自适应鲁棒控制器设计中的应用[J]. 自动化学报, 1992, 18(2):177-185. XIE Y C, WU H X. The application of the golden section in adaptive robust controller design[J]. Acta Automatica Sinica, 1992, 18(2):177-185(in Chinese).
[25] 胡军. 基于预测的全系数自校正采用一阶特征模型的论证[R]. 北京:北京控制工程研究所, 2014. HU J. Demonstration of first-order characteristic model based on predictive full coefficient self-correction[R]. Beijing:Beijing Institute of Control Engineering, 2014(in Chinese).
[26] 庞中华, 崔红. 系统辨识与自适应控制MATLAB仿真[M]. 北京:北京航空航天大学出版社, 2009:196-201. PANG Z H, CUI H. System identification and adaptive control MATLAB simulation[M]. Beihang:Beijing University Press, 2009:196-201(in Chinese).
文章导航

/