综述

管路构件塑性变形连接技术研究进展及挑战

  • 刘欣 ,
  • 杨景超 ,
  • 李恒 ,
  • 张艳红 ,
  • 杨智伟 ,
  • 谷箐菲 ,
  • 李光俊 ,
  • 黄丹
展开
  • 1. 西北工业大学 材料学院 凝固技术国家重点实验室, 西安 710072;
    2. 航空工业成都飞机工业(集团)有限责任公司, 成都 610092

收稿日期: 2021-01-12

  修回日期: 2021-03-05

  网络出版日期: 2021-07-09

基金资助

民机项目(MJ-2016-G-64);国家自然科学基金(51775441)

Critical review on tube joining by plastic deformation

  • LIU Xin ,
  • YANG Jingchao ,
  • LI Heng ,
  • ZHANG Yanhong ,
  • YANG Zhiwei ,
  • GU Jingfei ,
  • LI Guangjun ,
  • HUANG Dan
Expand
  • 1. State Key Lab of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC Chengdu Aircraft Industry (Group) Co., Ltd., Chengdu 610092, China

Received date: 2021-01-12

  Revised date: 2021-03-05

  Online published: 2021-07-09

Supported by

Commercial Aircraft Research and Development Project of China (MJ-2016-G-64); National Natural Science Foundation of China (51775441)

摘要

管路构件被广泛应用于航空航天等领域各类先进装备的介质传输构件与结构件,是起着"血管类"生命控制线作用的一类量大面广的关键构件,一般在整个装备中工作环境最为复杂、可靠性要求最为苛刻。各类管路构件的可靠性连接是确保其服役安全性与稳定性的瓶颈问题。管路构件塑性变形连接技术具有连接强度大、可靠性高、连接工艺过程高效环保等优点,已被广泛应用于各类管路构件的连接工艺。然而,随着各类先进装备对长寿命、高功效、轻量化和高可靠性要求的进一步提升,管路构件连接技术正面临新挑战。从接头塑性成形、装配工艺与服役性能等3方面综述了管路构件塑性连接的最新研究进展;结合工艺特点与服役性能,对比分析了几种主要连接结构的工艺过程和服役性能的差异;通过对上述研究进行动态分析,总结提出了管路构件塑性连接技术的发展趋势与所面临的技术挑战。

本文引用格式

刘欣 , 杨景超 , 李恒 , 张艳红 , 杨智伟 , 谷箐菲 , 李光俊 , 黄丹 . 管路构件塑性变形连接技术研究进展及挑战[J]. 航空学报, 2022 , 43(4) : 525258 -525258 . DOI: 10.7527/S1000-6893.2021.25258

Abstract

Being the key components that play the role of "blood vessel" life control lines, tubular fittings are widely used in fluids transmission components and structural parts of various advanced equipment such as aerospace, automobile and other fields. Generally, the working environment of tubular fittings is the most complex, and the reliability requirement is the most demanding in the whole equipment. The reliable connection of all kinds of pipe members is the bottleneck problem to ensure the safety and stability of service. Tube joining by plastic deformation technology has the advantages of high connection strength, high reliability, high efficiency and environmental protection during the connection process, and has been widely used in various pipeline connection processes. However, with the further improvement of all kinds of advanced equipment for long life, high efficiency, lightweight and high reliability requirements, tube joining technology is facing new challenges. In this paper, the latest research progress of tube joining by plastic deformation technology is reviewed from the aspects of plastic forming, assembly connection and service performance. Based on the analysis of the above research, the development trend and technical challenges of tube joining by plastic deformation technology are summarized.

参考文献

[1] LI H, FU M W. Deformation inhomogeneity[M]//Deformation-based processing of materials. Amsterdam:Elsevier, 2019:29-83.
[2] YANG H, LI H, ZHANG Z Y, et al. Advances and trends on tube bending forming technologies[J]. Chinese Journal of Aeronautics, 2012, 25(1):1-12.
[3] MORI K. Joining processes by plastic deformation[J]. Advanced Materials Research, 2014, 966-967:29-47.
[4] MORI K I, BAY N, FRATINI L, et al. Joining by plastic deformation[J]. CIRP Annals, 2013, 62(2):673-694.
[5] ALVES L M, SILVA C M A, MARTINS P A F. End-to-end joining of tubes by plastic instability[J]. Journal of Materials Processing Technology, 2014, 214(9):1954-1961.
[6] YANG J C, LI H, HUANG D, et al. Deformation-based joining for high-strength Ti-3Al-2.5V tubular fittings based on internal roller swaging[J]. International Journal of Mechanical Sciences, 2020, 171:105367.
[7] MARRÉ M, BROSIUS A, TEKKAYA A E. Joining by compression and expansion of (none-) reinforced profiles[J]. Advanced Materials Research, 2008, 43:57-68.
[8] PSYK V, RISCH D, KINSEY B L, et al. Electromagnetic forming-A review[J]. Journal of Materials Processing Technology, 2011, 211(5):787-829.
[9] GOLOVASHCHENKO S. Methodology of design of pulsed electromagnetic joining of tubes[C]//Second Global Symposium on Innovations in Materials Processing and Manufacturing:Sheet Materials, 2001:283-299.
[10] PARK Y B, KIM H Y, OH S I. Design of axial/torque joint made by electromagnetic forming[J]. Thin-Walled Structures, 2005, 43(5):826-844.
[11] WEDDELING C, WOODWARD S T, MARRÉ M, et al. Influence of groove characteristics on strength of form-fit joints[J]. Journal of Materials Processing Technology, 2011, 211(5):925-935.
[12] HAMMERS T, MARRÉ M, RAUTENBERG J, et al. Influence of mandrel's surface and material on the mechanical properties of joints produced by electromagnetic compression[J]. Steel Research International, 2009, 80(5):366-375.
[13] YOKELL S. A working guide to shell-and-tube heat exchangers[M]. New York:McGraw-Hill, 1990
[14] HOMBERG W, MARRÉ M, BEERWALD C, et al. Joining by forming of lightweight frame structures[J]. Advanced Materials Research, 2006, 10:89-100.
[15] GIES S, WEDDELING C, MARRÉ M, et al. Analytic prediction of the process parameters for form-fit joining by Die-less hydroforming[J]. Key Engineering Materials, 2012, 504-506:393-398.
[16] WEBER F, MVLLER M, HAUPT P, et al. Analytical process design for interference-fit joining of rectangular profiles[J]. Journal of Materials Processing Technology, 2020, 276:116391.
[17] GIES S, WEDDELING C, KWIATKOWSKI L, et al. Groove filling characteristics and strength of form-fit joints produced by Die-less hydroforming[J]. Key Engineering Materials, 2013, 554-557:671-680.
[18] WEBER F, HAHN M, TEKKAYA A E. Joining by Die-less hydroforming with outer pressurization[J]. Journal of Advanced Joining Processes, 2020, 1:100014.
[19] 欧阳小平, 方旭, 朱莹, 等. 航空液压管接头综述[J]. 中国机械工程, 2015, 26(16):2262-2271. OUYANG X P, FANG X, ZHU Y, et al. Overview of aviation hydraulic fittings[J]. China Mechanical Engineering, 2015, 26(16):2262-2271(in Chinese).
[20] 王巧玲, 詹梅, 李宏伟, 等. 大直径薄壁管双扩口成形机理与工艺研究[J]. 塑性工程学报, 2019, 26(3):104-112. WANG Q L, ZHAN M, LI H W, et al. Research on forming mechanism and process of double flaring tubes with large diameter and thin wall[J]. Journal of Plasticity Engineering, 2019, 26(3):104-112(in Chinese).
[21] SAE INTERNATIONAL. Tubing end double flare, standard dimensions for:AS33583[S]. New York:SAE Committee, 1997:1-3.
[22] LU Y H. Study of tube flaring ratio and strain rate in the tube flaring process[J]. Finite Elements in Analysis and Design, 2004, 40(3):305-318.
[23] 席鹏翀. 7A04铝合金轮毂挤压成形工艺与实验研究[D]. 太原:中北大学, 2008:51-52. XI P C. Study on extrusion forming technology and experiment of 7A04 aluminum alloy wheel hub[D]. Taiyuan:North University of China, 2008:51-52(in Chinese).
[24] AL-HASSANI S T S, JOHNSON W, LOWE W T. Characteristics of inversion tubes under axial loading[J]. Journal of Mechanical Engineering Science, 1972, 14(6):370-381.
[25] MANABE K, NISHIMURA H. Forming loads in tube-flaring with conical punch-Study on nosing and flaring of tubes V[J]. Journal of the Japan Society for Technology of Plasticity, 1983, 24(264):47-51.
[26] MANABE K, NISHIMURA H. Stress and strain distributions in tube-flaring with conical punch-Study on nosing and faring of tubes VI[J]. Journal of the Japan Society for Technology of Plasticity, 1983, 24(266):276-282.
[27] YANG J L, LUO M, HUA Y L, et al. Energy absorption of expansion tubes using a conical-cylindrical die:experiments and numerical simulation[J]. International Journal of Mechanical Sciences, 2010, 52(5):716-725.
[28] SUN Z C, YANG H. Failure mechanism and forming limit of tube axial compressive process[J]. Transactions of Nonferrous Metals Society of China, 2006, 16:s785-s790.
[29] 杜红伟, 李克彬, 应富强. 薄壁管管端成形的有限元分析[J]. 塑性工程学报, 2010, 17(4):66-70. DU H W, LI K B, YING F Q. Finite element analysis on end forming of thin-walled tubes[J]. Journal of Plasticity Engineering, 2010, 17(4):66-70(in Chinese).
[30] 王同海, 赵国群, 贾玉玺. 管材冲压扩口变形区的应力应变分析[J]. 山东工业大学学报, 1999, 29(3):258-262. WANG T H, ZHAO G Q, JIA Y X. Analysis of stress and strain in swelling deformation area at the end of tubes[J]. Journal of Shandong University of Technology, 1999, 29(3):258-262(in Chinese).
[31] ALVES M L, ALMEIDA B P P, ROSA P A R, et al. End forming of thin-walled tubes[J]. Journal of Materials Processing Technology, 2006, 177(1-3):183-187.
[32] MIRZAI M A, MANABE K I, MABUCHI T. Deformation characteristics of microtubes in flaring test[J]. Journal of Materials Processing Technology, 2008, 201(1-3):214-219.
[33] YANG J C, LI H, HUANG D, et al. Forming of thin-walled AA6061-T4 tubular joint by elastomeric bulging:experiment and computation[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2):25-38.
[34] 李光俊, 詹梅. LF2M-JG6×1挤压式无扩口导管端头成形工艺[J]. 塑性工程学报, 2008, 15(2):54-56. LI G J, ZHAN M. The end forming technology of LF2M-JG6×1 non-extend tube[J]. Journal of Plasticity Engineering, 2008, 15(2):54-56(in Chinese).
[35] YANG J C, LI H, BIAN T J, et al. Relationship among joined tubular material properties, joining behavior and performance by elastomeric swaging[J]. Thin-Walled Structures, 2021, 162:107561.
[36] SHIRGAOKAR M, NGAILE G, ALTAN T, et al. Hydraulic crimping:Application to the assembly of tubular components[J]. Journal of Materials Processing Technology, 2004, 146(1):44-51.
[37] HENRIKSEN J, NORDHAGEN H O, HOANG H N, et al. Numerical and experimental verification of new method for connecting pipe to flange by cold forming[J]. Journal of Materials Processing Technology, 2015, 220:215-223.
[38] 张荣霞, 吴为, 曾元松. TA18钛合金导管的内径滚压连接工艺[J]. 锻压技术, 2017, 42(5):43-47. ZHANG R X, WU W, ZENG Y S. Internal rolling connecting on guide tubes for titanium alloy TA18[J]. Forging & Stamping Technology, 2017, 42(5):43-47(in Chinese).
[39] MARRÉ M, BROSIUS A, TEKKAYA A E. New aspects of joining by compression and expansion of tubular workpieces[J]. International Journal of Material Forming, 2008, 1(1):1295-1298.
[40] PRZYBYLSKI W, WOJCIECHOWSKI J, KLAUS A, et al. Manufacturing of resistant joints by rolling for light tubular structures[J]. The International Journal of Advanced Manufacturing Technology, 2008, 35(9-10):924-934.
[41] EATON Aerospace Group. Rynglok tube fitting system[EB/OL]. (2019-08)[2021-06-01]. https://www.eaton.com/Eaton/ProductsServices/Aerospace/HosesCouplingsDuctingandSeals/Rynglok/index.htm.
[42] ZHANG Q, ZHANG Y S, CAO M, et al. Joining process for copper and aluminum tubes by rotary swaging method[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(1-4):163-173.
[43] ZHANG Q, JIN K Q, MU D. Tube/tube joining technology by using rotary swaging forming method[J]. Journal of Materials Processing Technology, 2014, 214(10):2085-2094.
[44] HARTL D J, LAGOUDAS D C. Aerospace applications of shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2007, 221(4):535-552.
[45] AREOFIT. Shape memory alloy fluid fitting system[EB/OL]. (2009-11-12)[2021-06-01]. https://www.aerofit.com.
[46] 王磊, 闫德胜, 姜志民, 等. Ni-Ti-Nb宽滞后形状记忆合金管接头研究和进展[J]. 材料工程, 2004, 32(7):60-63. WANG L, YAN D S, JIANG Z M, et al. Research and development of Ni-Ti-Nb shape memory alloy pipe-joint with wide hysteresis[J]. Journal of Materials Engineering, 2004, 32(7):60-63(in Chinese).
[47] PATTABI M, MURARI M S. Effect of cold rolling on phase transformation temperatures of NiTi shape memory alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(2):556-564.
[48] YIN X Q, MI X J, LI Y F, et al. Microstructure and properties of deformation processed polycrystalline Ni47Ti44Nb9 shape memory alloy[J]. Journal of Materials Engineering and Performance, 2012, 21(12):2684-2690.
[49] LEE W J, WEBER B, LEINENBACH C. Recovery stress formation in a restrained Fe-Mn-Si-based shape memory alloy used for prestressing or mechanical joining[J]. Construction and Building Materials, 2015, 95:600-610.
[50] TABESH M, BOYD J, ATLI K C, et al. Design, fabrication, and testing of a multiple-actuation shape memory alloy pipe coupler[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(6):1165-1182.
[51] PIOTROWSKI B, BEN ZINEB T, PATOOR E, et al. A finite element-based numerical tool for Ni47Ti44Nb9 SMA structures design:application to tightening rings[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(2):141-153.
[52] 刘欣. NiTiFe形状记忆合金管接头连接成形过程建模仿真研究[D]. 西安:西北工业大学, 2019:65-66. LIU X. Numerical simulation study on joining process of NiTiFe shape memory alloy tube joint[D]. Xi'an:Northwestern Polytechnical University, 2019:65-66(in Chinese).
[53] LI H, YANG J C, CHEN G Y, et al. Towards intelligent design optimization:Progress and challenge of design optimization theories and technologies for plastic forming[J]. Chinese Journal of Aeronautics, 2021, 34(2):104-123.
[54] SILVA C M A, NIELSEN C V, ALVES L M, et al. Environmentally friendly joining of tubes by their ends[J]. Journal of Cleaner Production, 2015, 87:777-786.
[55] ALVES L M, MARTINS P A F. Tube branching by asymmetric compression beading[J]. Journal of Materials Processing Technology, 2012, 212(5):1200-1208.
[56] GONÇALVES A, ALVES L M, MARTINS P A F. Tube joining by asymmetric plastic instability[J]. Journal of Materials Processing Technology, 2014, 214(1):132-140.
[57] ALVES L M, SILVA C M A, MARTINS P A F. Joining of tubes by internal mechanical locking[J]. Journal of Materials Processing Technology, 2017, 242:196-204.
[58] YU H Y, LI J X, HE Z Z. Formability assessment of plastic joining by compression instability for thin-walled tubes[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9-12):3423-3430.
[59] 李光俊, 兰勇, 孙林, 等. 柔性组合夹具在飞机导管数字化快速制造中的应用[J]. 航空制造技术, 2012, 55(9):58-61. LI G J, LAN Y, SUN L, et al. Application of flexible combine-clamp in digital rapid production for aircraft tube[J]. Aeronautical Manufacturing Technology, 2012, 55(9):58-61(in Chinese).
[60] 樊伟, 郑联语, 王亚辉, 等. 管路组件可重构装配工装系统的定位器自动配置与性能分析[J]. 航空学报, 2018, 39(5):421793. FAN W, ZHENG L Y, WANG Y H, et al. Automatic configuration and performance analysis of locators for reconfigurable assembly fixture system of pipeline components[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):421793(in Chinese).
[61] 顾城歌, 徐晓坤, 周志宇, 等. 数字空间中管路协调建模与求解[J]. 机械设计与制造, 2020(9):221-225. GU C G, XU X K, ZHOU Z Y, et al. Pipeline coordination modeling and solving in digital space[J]. Machinery Design & Manufacture, 2020(9):221-225(in Chinese).
[62] 刘江省. 面向管路系统设计的虚拟装配技术的研究[D]. 哈尔滨:哈尔滨工业大学, 2007:104-105. LIU J X. Research on virtual assembly technique for pipeline design[D]. Harbin:Harbin Institute of Technology, 2007:104-105(in Chinese).
[63] 樊伟, 郑联语, 王亚辉. 面向管路组件装配的自动化可重构柔性工装系统[J]. 计算机集成制造系统, 2018, 24(11):2686-2700. FAN W, ZHENG L Y, WANG Y H. Automatic reconfigurable and flexible fixture system for pipeline components in assembly process[J]. Computer Integrated Manufacturing Systems, 2018, 24(11):2686-2700(in Chinese).
[64] LI S Q. Mixed reality-based interactive technology for aircraft cabin assembly[J]. Chinese Journal of Mechanical Engineering, 2009, 22(3):403.
[65] 唐健钧, 叶波, 耿俊浩. 飞机装配作业AR智能引导技术探索与实践[J]. 航空制造技术, 2019, 62(8):22-27. TANG J J, YE B, GENG J H. Exploration and practice of aircraft assembly AR intelligent pilot technology[J]. Aeronautical Manufacturing Technology, 2019, 62(8):22-27(in Chinese).
[66] 张秋月, 安鲁陵. 虚拟现实和增强现实技术在飞机装配中的应用[J]. 航空制造技术, 2017, 60(11):40-45. ZHANG Q Y, AN L L. Application of virtual reality and augment reality in aircraft assembly[J]. Aeronautical Manufacturing Technology, 2017, 60(11):40-45(in Chinese).
[67] 张天. 基于多目视觉的管路数字化测量方法研究[D]. 北京:北京理工大学, 2014:129-131. ZHANG T. Research on multi-vision-based digitized measurement method for pipelines[D]. Beijing:Beijing Institute of Technology, 2014:129-131(in Chinese).
[68] 罗月迎, 王雅萍, 朱目成. 船用弯管几何参数的机器视觉测量方法研究[J]. 机械设计与制造, 2015(6):55-58. LUO Y Y, WANG Y P, ZHU M C. The study for the marine pipe geometric parameter measurement method based on machine vision[J]. Machinery Design & Manufacture, 2015(6):55-58(in Chinese).
[69] 谭本能, 唐纯纯. 航空导管的数字化测量方法研究[J]. 航空精密制造技术, 2018, 54(6):25-27. TAN B N, TANG C C. Research of digital measurement method for aircraft tubes[J]. Aviation Precision Manufacturing Technology, 2018, 54(6):25-27(in Chinese).
[70] LI G J, YANG J C, HUANG D, et al. Study on a digital inspection method for aircraft tubing assembly[M]//Mechanical Engineering and Materials. Cham:Springer International Publishing, 2021:41-48.
[71] 丁建春, 王细波, 杨燕, 等. 拧紧力矩对典型管接头密封带宽度影响研究[J]. 强度与环境, 2012, 39(2):9-13. DING J C, WANG X B, YANG Y, et al. Research on the effect of tightening torque to the seal width of a typical pipe Tie-in[J]. Structure & Environment Engineering, 2012, 39(2):9-13(in Chinese).
[72] 中国航空工业总公司. 飞机液压管路系统设计、安装要求:HB 6755-1993[S]. 北京:中国航空工业总公司,1994. CHINA AVIATION INDUSTRY CORPORATION. Design and installation requirements of aircraft hydraulic pipeline system:HB 6755-1993[S]. Beijing:China Aviation Industry Corporation,1994(in Chinese).
[73] 国防科学技术工业委员会. 24°无扩口导管安装拧紧控制及试验要求:HB 7000-2008[S]. 北京:中国航空综合技术研究所, 2008:1-2. Commission of Science, Technology and Industry for National Defense. 24° no-expansion catheter installation and tightening control and test requirements:HB 7000-2008[S]. Beijing:China Institute of Comprehensive Aviation Technology, 2008:1-2(in Chinese).
[74] 於为刚. 装配应力对飞机管路密封性能的影响分析及其检测方法研究[D]. 南京:南京航空航天大学, 2019:79-81. YU W G. Analysis of influence of assembly stress on aircraft pipeline sealing performance and its detection method[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:79-81(in Chinese).
[75] 衡波志. 飞机液压系统连接件及管路的有限元仿真分析[D]. 南京:南京航空航天大学, 2014:41-42. HENG B Z. Finite element analysis of pipeline and connection in aircraft's hydraulic system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:41-42(in Chinese).
[76] 周鑫, 庞贺伟, 刘宏阳, 等. 装配误差对球面密封结构密封状态影响分析[J]. 航天器工程, 2005, 14(4):35-39. ZHOU X, PANG H W, LIU H Y, et al. Analysis of assembly error on sealing state of spherical sealing structure[J]. Spacecraft Engineering, 2005, 14(4):35-39(in Chinese).
[77] 王晶, 陈果, 郑其辉, 等. 飞机液压管道初始装配应力仿真[J]. 航空计算技术, 2012, 42(6):54-57. WANG J, CHEN G, ZHENG Q H, et al. Simulation of initial assembly stress for aircraft hydraulic pipeline[J]. Aeronautical Computing Technique, 2012, 42(6):54-57(in Chinese).
[78] 程小勇, 陈果, 刘明华, 等. 初始安装应力对管道固有频率的影响分析及试验验证[J]. 中国机械工程, 2015, 26(4):512-517. CHENG X Y, CHEN G, LIU M H, et al. Analysis and experimental verification to effects of pipe initial installation stress on pipe's natural frequencies[J]. China Mechanical Engineering, 2015, 26(4):512-517(in Chinese).
[79] 冉光斌. 双锥形管接头密封管路联接结构的稳健设计方法[D]. 北京:中国工程物理研究院, 2005:41-42. RAN G B. Robust design method of the sealing pipeline joint structure with double-cone pipe union[D]. Beijing:China Academy of Engineering Physics,2005:41-42(in Chinese).
[80] 刘言, 孙洪涛, 徐祗伟. 工程机械液压系统管接头常用密封形式[J]. 工程机械与维修, 2017(10):75-77. LIU Y, SUN H T, XU Z W. Common sealing form of hydraulic system pipe joint of engineering machinery[J]. Construction Machinery & Maintenance, 2017(10):75-77(in Chinese).
[81] 闵冬翌. 锥形管接头密封结构非概率可靠性稳健设计[D]. 北京:中国工程物理研究院, 2016:41-42. MIN D Y. Non-probabilistic robust design of cone pipe joint sealing structure[D]. Beijing:2016:41-42(in Chinese).
[82] 李晓东. 可分离式航空液压管接头密封特性研究[D]. 大连:大连理工大学, 2018:57-58. LI X D. Sealing performance of separable aviation hydraulic fittings[D]. Dalian:Dalian University of Technology, 2018:57-58(in Chinese).
[83] 李玉婷. 柴油机高压油管密封性能分析[D]. 北京:北京理工大学, 2015:101-103. LI Y T. Analysis on sealing performance of high pressure fuel pipe of diesel engine[D]. Beijing:Beijing Institute of Technology, 2015:101-103(in Chinese).
[84] 张志广. 箭体管路接头可靠性连接量化研究[D]. 哈尔滨:哈尔滨工业大学, 2011:33-34. ZHANG Z G. The quantitative reliability of the pipe connectors in the rocket body[D]. Harbin:Harbin Institute of Technology, 2011:33-34(in Chinese).
[85] 闫洋洋. 航空卡套式管接头密封特性与振动失效机理研究[D]. 大连:大连理工大学, 2019:108-110. YAN Y Y. Analysis on sealing properties and vibration failure mechanism of aviation ferrule pipeline fittings[D]. Dalian:Dalian University of Technology, 2019:108-110(in Chinese).
[86] 何勃. 管路接头密封可靠性研究[D]. 西安:西北工业大学, 2016:75-75. HE B. Sealing reliability study for pipe joint[D]. Xi'an:Northwestern Polytechnical University, 2016:75-75(in Chinese).
[87] SAE INTERNATIONAL. Fittings, tube, fluid system, separable, high pressure dynamic beam seal, 5000/8000 psi, general specification for:AS85720A[S]. New York:SAE Committee G-3, 2008:1-22.
[88] 陈芝来. 航空发动机管路连接件典型结构密封性能研究[D]. 上海:上海交通大学, 2017:74-76. CHEN Z L. Study on seal performance of typical structure of areoengine tube connection[D]. Shanghai:Shanghai Jiao Tong University, 2017:74-76(in Chinese).
[89] JEON J Y, KIM B T. A study on contact characteristics by the geometry variation of beam seal fitting of an aircraft fuel hose[J]. Journal of the Korean Society of Manufacturing Process Engineers, 2013, 12(6):101-108.
[90] 陈果, 罗云, 郑其辉, 等. 复杂空间载流管道系统流固耦合动力学模型及其验证[J]. 航空学报, 2013, 34(3):597-609. CHEN G, LUO Y, ZHENG Q H, et al. Fluid-structure coupling dynamic model of complex spatial fluid-conveying pipe system and its verification[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):597-609(in Chinese).
[91] 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5):524651. WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524651(in Chinese).
[92] LANOUE F, VADEAN A, SANSCHAGRIN B. Finite element analysis and contact modelling considerations of interference fits for fretting fatigue strength calculations[J]. Simulation Modelling Practice and Theory, 2009, 17(10):1587-1602.
[93] VINGSBO O, SÖDERBERG S. On fretting maps[J]. Wear, 1988, 126(2):131-147.
[94] FOLETTI S, BERETTA S, GURER G. Defect acceptability under full-scale fretting fatigue tests for railway axles[J]. International Journal of Fatigue, 2016, 86:34-43.
[95] JUUMA T. Torsional fretting fatigue strength of a shrink-fitted shaft with a grooved hub[J]. Tribology International, 2000, 33(8):537-543.
[96] POURHEIDAR A, REGAZZI D, CERVELLO S, et al. Fretting fatigue analysis of full-scale railway axles in presence of artificial micro-notches[J]. Tribology International, 2020, 150:106383.
[97] ZHANG Y B, LU L T, ZOU L, et al. Finite element simulation of the influence of fretting wear on fretting crack initiation in press-fitted shaft under rotating bending[J]. Wear, 2018, 400-401:177-183.
[98] 程小勇. 飞机液压导管疲劳实验与应力控制技术研究[D]. 南京:南京航空航天大学, 2014:48-49. CHENG X Y. Study on fatigue test and stress control techniques of aircraft hydraulic pipelines[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:48-49(in Chinese).
[99] 高镇同, 熊峻江. 疲劳/断裂可靠性研究现状与展望[J]. 机械强度, 1995, 17(3):61-82. GAO Z T, XIONG J J. The present situation and prospects for the fatigue/fracture reliability study[J]. Journal of Mechanical Strength, 1995, 17(3):61-82(in Chinese).
[100] US-ASTM. Standard practice for statistical analysis of linear or linearized stress-life(S-N) and strain-life(E-N) fatigue data:ASTM E739-2010(2015)[S]. West Conshohocken:ASTM Standard, 2010.
[101] 中华人民共和国航空航天工业部. 飞机液压导管及连接件弯曲疲劳试验:HB 6442-90[S]. 北京:中国航空综合技术研究所, 1990. Ministry of Aerospace Industry, China. Aircraft hydraulic catheter and connector bending fatigue test:HB 6442-90[S]. Beijing:China Institute of Integrated Aviation Technology, 1990(in Chinese).
[102] 陈蓄, 柳进. 航空液压导管弯曲振动试验方法[J]. 航空学报, 1990, 11(11):641-643. CHEN X, LIU J. Flexure vibration test method of aviation tube[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(11):641-643(in Chinese).
[103] 舒送. 无扩口连接航空导管旋转弯曲疲劳试验研究[D]. 沈阳:沈阳航空航天大学, 2011:63-64. SHU S. Research of rotary bending fatigue test for no flaring connection of aviation conduit[D]. Shenyang:Shenyang Aerospace University, 2011:63-64(in Chinese).
[104] 刘明星, 刘志峰, 宋守许. 基于ABAQUS/fe-safe的服役后轴类零件疲劳分析方法[J]. 机械设计与制造, 2012(9):72-74. LIU M X, LIU Z F, SONG S X. Fatigue analysis method of used shaft parts based on ABAQUS/fe-safe[J]. Machinery Design & Manufacture, 2012(9):72-74(in Chinese).
[105] 张淼, 袁锋, 孟庆春, 等. 轴对称构件疲劳损伤演化方程与寿命预估方法的改进[J]. 应用力学学报, 2008, 25(3):489-493, 546. ZHANG M, YUAN F, MENG Q C, et al. Improvement of damage evolution equation and method for fatigue life prediction of axial-symmetrical specimens[J]. Chinese Journal of Applied Mechanics, 2008, 25(3):489-493, 546(in Chinese).
[106] 张淼, 孟庆春, 张行. 无扩口管路连接件疲劳寿命预估的损伤力学-有限元法[J]. 航空学报, 2009, 3(3):435-443. ZHANG M, MENG Q C, ZHANG X. Damage mechanics-finite element method for fatigue life prediction of flare-free pipeline connection assemblies[J]. Acta Aeronautica et Astronautica Sinica, 2009, 3(3):435-443(in Chinese).
[107] 徐明波, 柳鸿飞, 高玉魁. 40CrNi2Si2MoVA钢机械加工与喷丸试样旋转弯曲疲劳寿命的预测方法[J]. 航空材料学报, 2020, 40(1):87-92. XU M B, LIU H F, GAO Y K. Prediction method of rotating-bending fatigue life of 40CrNi2Si2MoVA steel specimens after machining and shot peening[J]. Journal of Aeronautical Materials, 2020, 40(1):87-92(in Chinese).
文章导航

/