电子电气工程与控制

多太阳能无人机覆盖路径优化方法

  • 杜楠楠 ,
  • 陈建 ,
  • 马奔 ,
  • 王术波 ,
  • 张自超
展开
  • 1. 中国农业大学 工学院, 北京 100083;
    2. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
    3. 武汉大学 测绘遥感信息工程国家重点实验室, 武汉 430079

收稿日期: 2020-07-02

  修回日期: 2020-07-27

  网络出版日期: 1900-01-01

基金资助

国家重点研发计划(2018YFD0700603,2017YFD0701003);国家自然科学基金(51979275);吉林省重点研发计划(20180201036SF);测绘遥感信息工程国家重点实验室资助课题(19R06);中国农业大学2115人才工程

Optimization method for coverage path planning of multi-solar powered UAVs

  • DU Nannan ,
  • CHEN Jian ,
  • MA Ben ,
  • WANG Shubo ,
  • ZHANG Zichao
Expand
  • 1. College of Engineering, China Agricultural University, Beijing 100083, China;
    2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
    3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

Received date: 2020-07-02

  Revised date: 2020-07-27

  Online published: 1900-01-01

Supported by

National Key R&D Program of China (2018YFD0700603, 2017YFD0701003); National Natural Science Foundation of China (51979275); Jilin Province Key R&D Plan Project (20180201036SF); Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (19R06); 2115 Talent Development Program of China Agricultural University

摘要

为解决传统电动无人机在覆盖作业时存在的续航时间短的问题,提出应用多架太阳能无人机进行覆盖作业。首先,在建立了应用于覆盖作业的太阳能无人机的能量模型的基础上,提出了能量流动效率这一指标来评价太阳能无人机在作业过程中对能量的利用率。其次,针对边界存在障碍物的凹多边形区域和内部含障碍物的多边形区域,以总作业完成时间最短为优化目标,提出基于无向图搜索方法的覆盖路径优化模型,定义约束方程限制无人机按照一定规则访问无向图中的节点,通过混合整数线性规划的方法求解每架无人机的最优飞行路径。再次,考虑无人机转弯时的姿态变化对能量流动效率的影响,将总作业完成时间最短和总能量流动效率最高同时作为优化目标,建立双目标优化方程,在首先以作业时间最短为优化目标进行求解的基础上,通过有限遍历的方式选择使能流效率和作业时间相对最优的覆盖飞行方向及飞行路径。大量仿真实验表明,所提的优化模型选取不同的优化目标,应用于不同形状的待覆盖区域,适用性广,在工程上应用范围广、可行性强。

本文引用格式

杜楠楠 , 陈建 , 马奔 , 王术波 , 张自超 . 多太阳能无人机覆盖路径优化方法[J]. 航空学报, 2021 , 42(6) : 324476 -324476 . DOI: 10.7527/S1000-6893.2020.24476

Abstract

To solve the problem of short endurance of traditional electric UAVs during coverage operations, this paper proposes to use multiple solar powered UAVs for coverage operations. Firstly, an energy model for the coverage operations of the solar powered UAV is established, and the index of energy flow efficiency is proposed to evaluate the energy utilization rate of the solar powered UAV during the operation. Secondly, to get the shortest overall operation time, a coverage path optimization model based on the undirected graph search method is proposed for the concave polygon region with obstacles on the boundary and the polygon area with obstacles inside. The constraint equations are defined to restrict the UAV to visit the nodes of the undirected graph according to certain rules, and the optimal flight path of each UAV is solved by the method of mixed integer linear programming. Thirdly, considering the influence of attitude change on energy flow efficiency when the UAV turns, a double objective optimization equation is established to obtain the shortest operation time and the highest energy flow efficiency at the same time. After obtaining the shortest operation time, the coverage flight direction and flight path with the relatively optimal energy flow efficiency and operation time are selected through the limited traversal method. A large number of simulation experiments show that the optimization model proposed selects different optimization objectives and can be applied to different shapes of areas to be covered, and has wide applicability and strong feasibility in Engineering practice.

参考文献

[1] 于力, 马振利, 江宝城. 外军军用无人机体系现状及发展趋势[J]. 飞航导弹, 2020(5):34-39. YU L, MA Z L, JIANG B C. Current situation and development trend of foreign military UAV system[J]. Aerodynamic Missile Journal, 2020(5):34-39(in Chinese).
[2] BEJIGA M, ZEGGADA A, NOVFFIDJ A, et al. A convolutional neural network approach for assisting avalanche search and rescue operations with UAV imagery[J]. Remote Sensing, 2017, 9(2):100.
[3] 张自超, 韩宇, 陈建, 等. 基于无人机遥感数据的生态渠系信息提取[J]. 排灌机械工程学报, 2018,36(10):1006-1011. ZHANG Z C, HAN Y, CHEN J, et al. Information extraction of ecological canal system based on UAV remote sensing data[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018,36(10):1006-1011(in Chinese).
[4] 王术波, 韩宇, 陈建, 等. 基于深度学习的无人机遥感生态灌区杂草分类[J]. 排灌机械工程学报, 2018,36(11):1137-1141. WANG S B, HAN Y, CHEN J, et al. Weed classification of remote sensing by UAV in ecological irrigation area based on deep learning[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018,36(11):1137-1141(in Chinese).
[5] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3):623418. MA D L, ZHANG L, YANG M Q, et al. Review of the key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623418(in Chinese).
[6] BOUCHER R. History of solar flight[C]//20th Joint Propulsion Conference. Reston:AIAA,1984:1429.
[7] NOTH A. Designing solar airplanes for continuous flight[J]. SPIE Newsroom, 2009.
[8] 刘莉, 曹潇, 张晓辉, 等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3):623474. LIU L, CAO X, ZHANG X H, et al. Review of development of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623474(in Chinese).
[9] OETTERSHAGEN P, MELZER A, MANTEL T, et al. Design of small hand-launched solar-powered UAVs:From concept study to a multi-day world endurance record flight[J]. Journal of Field Robotics, 2017, 34(7):1352-1377.
[10] OETTERSHAGEN P, MELZER A, MANTEL T, et al. Perpetual flight with a small solar-powered UAV:Flight results, performance analysis and model validation[C]//2016 IEEE Aerospace Conference. Piscataway:IEEE Press, 2016.
[11] GALCERAN E, CARRERAS M. A survey on coverage path planning for robotics[J]. Robotics and Autonomous Systems, 2013, 61(12):1258-1276.
[12] 徐博, 徐旻, 陈立平, 等. 智能机械全覆盖路径规划算法综述[J]. 计算机测量与控制, 2016, 24(10):1-5, 53. XU B, XU M, CHEN L P, et al. Review coverage path planning algorithm for intelligent machinery[J]. Computer Measurement & Control, 2016, 24(10):1-5, 53(in Chinese).
[13] AVELLAR G S C, PEREIRA G A S, PIMENTA L C A, et al. Multi-UAV routing for area coverage and remote sensing with minimum time[J]. Sensors, 2015, 15(11):27783-27803.
[14] 陈海, 王新民, 焦裕松, 等. 一种凸多边形区域的无人机覆盖航迹规划算法[J]. 航空学报, 2010, 31(9):1802-1808. CHEN H, WANG X M, JIAO Y S, et al. An algorithm of coverage flight path planning for UAVs in convex polygon areas[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1802-1808(in Chinese).
[15] LATOMBE J C. Exact cell decomposition[M]//Robot Motion Planning. Boston:Springer, 1991:200-247.
[16] CHOSET H. Coverage of known spaces:The boustrophedon cellular decomposition[J]. Autonomous Robots, 2000, 9(3):247-253.
[17] HUANG W H. Optimal line-sweep-based decompositions for coverage algorithms[C]//IEEE International Conference on Robotics & Automation.Piscataway:IEEE Press, 2001.
[18] 陈海, 何开锋, 钱炜祺. 多无人机协同覆盖路径规划[J]. 航空学报, 2016, 37(3):928-935. CHEN H, HE K F, QIAN W Q. Cooperative coverage path planning for Multi-UAV[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):928-935(in Chinese).
[19] NEDJATI A, IZBIRAK G, VIZVARI B, et al. Complete coverage path planning for a multi-UAV response system in post-earthquake assessment[J]. Robotics, 2016, 5(4):26.
[20] 王宏伦, 黄宇. 太阳能无人机能量生产估计模型及应用[J]. 战术导弹技术, 2017(1):9-16, 33. WANG H L, HUANG Y. Energy production estimation model and application of solar powered UAV[J]. Tactical Missile Technology, 2017(1):9-16, 33(in Chinese).
[21] 王炳忠, 申彦波. 太阳常数的研究沿革和进展(上)[J]. 太阳能, 2016(3):15-16, 71. WANG B Z, SHEN Y B. The evolution and progress of the study of solar constant (part 1)[J]. Solar Energy, 2016(3):15-16, 71(in Chinese).
[22] GOSWAMI. Principles of solar engineering, third edition[M]. Boca Raton:CRC Press, 2015.
[23] MILLER C E, TUCKER A W, ZEMLIN R A. Integer programming formulation of traveling salesman problems[J]. Journal of the ACM, 1960, 7(4):326-329.
[24] CAO Y, HAN Y, CHEN J, et al. Optimal coverage path planning algorithm of the tractor-formation based on probabilistic roadmaps[C]//IEEE International Conference on Unmanned Systems and Artificial Intelligence. Piscataway:IEEE Press, 2019:27-32.
[25] 李文广, 胡永江, 孙世宇, 等. 基于最小转弯半径的无人机转弯航迹规划算法[J]. 计算机工程与设计, 2019, 40(10):2849-2854. LI W G, HU Y J, SUN S Y, et al. UAV turning path planning algorithm based on minimum turning radius[J]. Computer Engineering and Design, 2019, 40(10):2849-2854(in Chinese).
[26] 戴世通. 无人机飞行可视化仿真系统设计[D]. 西安:西安理工大学, 2008:12. DAI S T. Visual simulation system design of UAV flight[D]. Xi'an:Xi'an University of Technology, 2008:12(in Chinese).
文章导航

/