材料工程与机械制造

钛液滴作用下钛合金薄片火蔓延的数值模拟

  • 罗圣峰 ,
  • 王光健 ,
  • 马小斌 ,
  • 郑丽丽 ,
  • 汪瑞军
展开
  • 1. 清华大学 工程物理系 公共安全研究院, 北京 100086;
    2. 清华大学 航天航空学院, 北京 100086;
    3. 中国农业机械化科学研究院, 北京 100083

收稿日期: 2021-04-12

  修回日期: 2021-05-10

  网络出版日期: 2021-06-29

基金资助

国家科技重大专项(2017-VII-0012-0108);国家重点科研计划(2020YFA0714500);国家自然科学基金面上项目(7204100828);中国博士后科学基金(2019M660664)

Simulation of flame spread of titanium-alloy sheet under effect of titanium droplet

  • LUO Shengfeng ,
  • WANG Guangjian ,
  • MA Xiaobin ,
  • ZHENG Lili ,
  • WANG Ruijun
Expand
  • 1. Institute of Public Safety, Department of Engineering Physics, Tsinghua University, Beijing 100086, China;
    2. School of Aerospace Engineering, Tsinghua University, Beijing 100086, China;
    3. China Academy of Agricultural Mechanization Sciences, Beijing 100083, China

Received date: 2021-04-12

  Revised date: 2021-05-10

  Online published: 2021-06-29

Supported by

National Science and Technology Major Project (2017-VII-0012-0108); National Key Research and Development Program of China (2020YFA0714500); National Science Foundation of China (7204100828); China Postdoctoral Science Foundation (2019M660664)

摘要

针对钛火液滴法实验过程中钛合金薄片被引燃后的火蔓延行为, 基于数值模拟研究钛合金在高温热源作用下的钛火传播过程。研究了在不同初始温度和环境条件下钛合金薄片中心被引燃后向四周蔓延的过程, 并分析了钛合金薄片被烧断的条件。结果表明:钛合金薄片被引燃的初始阶段, 钛火传播前沿以圆弧形态传播, 圆弧形火焰前锋在薄片边缘会因边沿效应而出现拉伸;当薄片初始温度较低时钛合金起火经短暂传播后缓慢熄灭, 当初始温度较高时钛合金薄片最终被烧断;通过参数分析发现钛合金薄片燃烧断裂的临界对流换热系数和初始温度呈线性关系, 临界氧分压和初始温度呈负指数函数关系。

本文引用格式

罗圣峰 , 王光健 , 马小斌 , 郑丽丽 , 汪瑞军 . 钛液滴作用下钛合金薄片火蔓延的数值模拟[J]. 航空学报, 2022 , 43(9) : 425652 -425652 . DOI: 10.7527/S1000-6893.2021.25652

Abstract

This work analyzes the flame spread behaviors of the titanium-alloy sheet in the experiment of the titanium-fire-drop method. The flame spread process of titanium alloy under the effect of a high-temperature heat source was investigated based on numerical simulation. The process of flame spread of titanium-alloy sheet after being ignited in the center under different initial temperatures and environmental conditions is studied. The conditions of the titanium-alloy sheet being burned to fracture are analyzed. The results show that the flame front propagated in an arc shape at the beginning, and stretched at the edge of the sheet due to the edge effect. When the initial temperature of the sheet was low, the flame of the titanium alloy after ignition spread for a short time and then went out slowly. The titanium alloy sheet was finally burned to fracture when the initial temperature was high. Parameter analysis shows that the critical convective heat transfer coefficient of combustion fracture of the titanium alloy sheet is linearly related to the initial temperature, and the relationship between the critical partial pressure of oxygen and the initial temperature is a negative exponential function.

参考文献

[1] ELROD C W. Review of titanium application in gas turbine engines[C]//Proceedings of ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. New York: ASME 2009: 649-656.
[2] STROBRIDGE T, MOULDER J, CLARK A. Titanium combustion in turbine engines: NBSIR-79-1616[R]. Boulder: National Bureau of Standards, 1979.
[3] MI G B, HUANG X, CAO J X, et al. Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(8): 2270-2275.
[4] HUANG X, CAO C X, MA J M, et al. Titanium combustion in aeroengines and fire-resistant titanium alloys[J]. Journal of Materials Engineering, 1997, 25(8): 11-15 (in Chinese). 黄旭, 曹春晓, 马济民, 等. 航空发动机钛燃烧及阻燃钛合金[J]. 材料工程, 1997, 25(8): 11-15.
[5] CHEN G. Frequent Ti-alloy fired accidents[J]. International Aviation, 2009(3): 45-47 (in Chinese). 陈光. 频发的发动机钛着火故障[J]. 国际航空, 2009(3): 45-47.
[6] MI G B, HUANG X, CAO J X, et al. Ignition resistance performance and its theoretical analysis of Ti-V-Cr type fireproof titanium alloys[J]. Acta Metallurgica Sinica, 2014, 50(5): 575-586 (in Chinese). 弭光宝, 黄旭, 曹京霞, 等. Ti-V-Cr系阻燃钛合金的抗点燃性能及其理论分析[J]. 金属学报, 2014, 50(5): 575-586.
[7] WANG C, HU J, WANG F, et al. Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection[J]. Review of Scientific Instruments, 2018, 89(4): 044902.
[8] SHAO L, XIE G L, ZHANG C, et al. Combustion of metals in oxygen-enriched atmospheres[J]. Metals, 2020, 10(1): 128.
[9] LI G P, LI D, LIU Y Y, et al. On the burn resistance of Ti-35V-15Cr-0.05C titanium alloy[J]. Acta Metallurgica Sinica (English Letters), 1998, 11(3): 202-206.
[10] DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 022763 (in Chinese). 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6): 022763.
[11] MI G B, LIANG X Y, LI P J, et al. Numerical calculation and analysis of friction ignition characteristics of aero-engine titanium alloy at micro-scale[J]. Aeronautical Manufacturing Technology, 2020, 63(16): 68-74, 85 (in Chinese). 弭光宝, 梁贤烨, 李培杰, 等. 航空发动机钛合金在微尺度下摩擦着火特性数值计算分析[J]. 航空制造技术, 2020, 63(16): 68-74, 85.
[12] MI G B, HUANG X, CAO J X, et al. Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition[J]. Acta Physica Sinica, 2016, 65(5): 056103 (in Chinese). 弭光宝, 黄旭, 曹京霞, 等. 摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征[J]. 物理学报, 2016, 65(5): 056103.
[13] MI G B, CAO C X, HUANG X, et al. Ignition resistance performance and its mechanism of TC11 titanium alloy for aero-engine[J]. Journal of Aeronautical Materials, 2014, 34(4): 83-91 (in Chinese). 弭光宝, 曹春晓, 黄旭, 等. 航空发动机用TC11钛合金抗点燃性能及机理研究[J]. 航空材料学报, 2014, 34(4): 83-91.
[14] MI G B, HUANG X, CAO J X, et al. Experimental technique of titanium fire in aero-engine[J]. Journal of Aeronautical Materials, 2016, 36(3): 20-26 (in Chinese). 弭光宝, 黄旭, 曹京霞, 等. 航空发动机钛火试验技术研究新进展[J]. 航空材料学报, 2016, 36(3): 20-26.
[15] SUI N, MI G B, YAN M Q, et al. Burning products of TA15 titanium alloy by friction oxygen concentration method[J]. Rare Metals, 2018, 37(11): 952-960.
[16] ZHAO Y Q, ZHOU L, DENG J. Role of interface in burn of titanium alloys[J]. Journal of Aeronautical Materials, 1999, 19(1): 29-33 (in Chinese). 赵永庆, 周廉, 邓炬. 界面在钛合金燃烧过程中的作用[J]. 航空材料学报, 1999, 19(1): 29-33.
[17] SHAO L, XIE G L, LI H Y, et al. Combustion behavior and mechanism of Ti14 titanium alloy[J]. Materials, 2020, 13(3): 682.
[18] FOX D. Investigation of titanium combustion characteristics and suppression techniques: AFAPL-TV-75-73[R]. Wright-Patterson AFB: Air Force Aero Propulsion Lab, 1976.
[19] WANG R J, FU B Y, SHI M. Titanium fire drop method tester and testing method: CN103033536A[P]. 2013-04-10 (in Chinese). 汪瑞军, 傅斌友, 史萌. 一种钛火液滴法试验装置及其测试方法: CN103033536A[P]. 2013-04-10.
[20] BAO M Y, WANG Y Q, XU Z P, et al. Research on evaluation of burn resistant coatings properties of titanium alloys by droplet ignition method[J]. New Technology & New Process, 2020(7): 60-62 (in Chinese). 鲍曼雨, 王亦奇, 徐召朋, 等. "熔滴法"评价钛合金阻燃层性能技术研究[J]. 新技术新工艺, 2020(7): 60-62.
[21] FU B Y, WANG R J, SHI M, et al. Study on performance of burn-resistant coating deposited by micro-arc ion surface modification technology[J]. Transactions of the China Welding Institution, 2015, 36(6): 19-22, 114 (in Chinese). 傅斌友, 汪瑞军, 史萌, 等. 微弧离子沉积阻燃涂层及其性能[J]. 焊接学报, 2015, 36(6): 19-22, 114.
[22] WANG R J, MA X B, BAO M Y. A study on mechanical properties of combustion-resistant and thermal barrier functional coating prepared on titanium alloy surface[J]. Journal of Xiangtan University (Natural Science Edition), 2019, 41(6): 27-34 (in Chinese). 汪瑞军, 马小斌, 鲍曼雨. 钛合金表面阻燃隔热复合功能涂层力学性能研究[J]. 湘潭大学学报(自然科学版), 2019, 41(6): 27-34.
[23] YANG J L, CHEN H X. Ignition mechanism of combustible materials by an embedded hot metal particle[J]. Journal of Combustion Science and Technology, 2014, 20(4): 329-334 (in Chinese). 杨玖玲, 陈海翔. 高温金属颗粒作用下可燃物的点燃机理[J]. 燃烧科学与技术, 2014, 20(4): 329-334.
[24] WEBER R O, SIDHU H S, SAWADE D M, et al. Using the method of lines to determine critical conditions for thermal ignition[J]. Journal of Engineering Mathematics, 2006, 56(2): 185-200.
[25] STAGGS J E. A theoretical investigation of initiation of travelling combustion fronts in fuel beds from embedded hotspots[J]. Journal of Fire Sciences, 2012, 30(5): 437-456.
[26] KUZNETSOV G V, MAMONTOV G Y, TARATUSHKINA G V. Numerical simulation of ignition of a condensed substance by a particle heated to high temperatures[J]. Combustion, Explosion and Shock Waves, 2004, 40(1): 70-76.
[27] WANG B, TIAN W. Combustion morphology and mechanism analysis of titanium alloy TC4[J]. Gas Turbine Experiment and Research, 2013, 26(3): 50-52, 28 (in Chinese). 王标, 田伟. TC4钛合金燃烧形貌和机理分析[J]. 燃气涡轮试验与研究, 2013, 26(3): 50-52, 28.
[28] GLASSMAN I. Metal combustion processes: 473[R]. Princeton: Princeton University, 1959.
[29] KHAIKIN B I, BLOSHENKO V N, MERZHANOV A G. On the ignition of metal particles[J]. Combustion, Explosion and Shock Waves, 1970, 6(4): 412-422.
[30] WILSON D B, STOLTZFUS J M. Fundamentals of metals ignition in oxygen[M]//Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Eighth Volume. West Conshohocken: ASTM International, 2009: 272.
[31] TAKAHASHI T, MINAMINO Y, HIRASAWA H, et al. High-temperature oxidation and its kinetics study of Ti-Al and Ti-V alloys in air[J]. Materials Transactions, 2014, 55(2): 290-297.
[32] CHICARDI E, CÓRDOBA J M, GOTOR F J. Kinetics of high-temperature oxidation of (Ti, Ta)(C, N)-based cermets[J]. Corrosion Science, 2016, 102: 168-177.
[33] OVIEDO C. Oxidation kinetics of pure titanium at low pressures[J]. Journal of Physics: Condensed Matter, 1993, 5(33A): A153-A154.
[34] ANDERSON V, MANTY B. Titanium alloy ignition and combustion: NADC 76083-30[R]. West Palm Beach: Pratt and Whitney Aircraft Group, 1978.
[35] LITTMAN F E, CHURCH F M, KINDERMAN E M. A study of metal ignitions I. The spontaneous ignition of titanium[J]. Journal of the Less Common Metals, 1961, 3(5): 367-378.
[36] BOLOBOV V I. Theory of ignition of metals at fracture[J]. Combustion, Explosion, and Shock Waves, 2012, 48(6): 689-693.
[37] BOLOBOV V I. Possible mechanism of autoignition of titanium alloys in oxygen[J]. Combustion, Explosion and Shock Waves, 2003, 39(6): 677-680.
[38] ELROD C, RIVIR R, RABE D. Laser ignition of titanium AFAPL-TR-76-12[R]. Wright-Patterson AFB: Air Force Aero Propulsion Lab, 1976.
[39] BOLOBOV V I. Auto-ignition problem titanium of oxygen and possible ways of solving[M]//Advances in Mechanical Engineering. Cham: Springer International Publishing, 2015: 13-22.
文章导航

/