论文

铜合金表面激光熔覆镍基复合涂层性能分析

  • 雍耀维 ,
  • 赵瑞恒 ,
  • 王军 ,
  • 张帅
展开
  • 宁夏大学 机械工程学院, 银川 750021

收稿日期: 2021-03-31

  修回日期: 2021-04-23

  网络出版日期: 2021-06-29

基金资助

宁夏自然科学基金(2018AAC03059);宁夏重点研发计划(引才专项)(2020BEB04030);宁夏高等学校科学研究项目(NGY2018021)

Properties of nickel-based composite alloy coating on copper reinforced by laser cladding

  • YONG Yaowei ,
  • ZHAO Ruiheng ,
  • WANG Jun ,
  • ZHANG Shuai
Expand
  • School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China

Received date: 2021-03-31

  Revised date: 2021-04-23

  Online published: 2021-06-29

Supported by

National Natural Science Foundation of Ningxia(2018AAC03059); Ningxia Key Research and Development Program (Special Talents) (2020BEB04030); Scientific Research Project of Ningxia Education Department (NGY2018021)

摘要

铜合金因其优良特性在航空航天领域具有广泛应用。为了提高铜合金的机械性能,通过在镍基合金粉末中添加WC和ZrO2粉末,利用原位生成的办法成功在铜合金表面制备了Ni基复合增强合金涂层,充分利用扫描电镜(SEM)、X射线衍射(XRD)、能谱分析(EDS)等表征技术和分析手段对熔覆层的微观组织、物相组成、硬度及耐磨性进行测试。结果显示:复合合金涂层中以WC、ZrC、M23C6、(W,Zr) C等碳化物为强化相,提高了涂层的硬度。对合金涂层的硬度、常温和高温耐磨性进行测试,复合涂层相比于基体,性能均得到有效提升,硬度从90 HV0.2提高至620 HV0.2,表面摩擦系数降低,耐磨性显著提升;尤其对高温耐磨性,提高约20倍。因此,经强化后的铜合金可实际应用于结晶器、火箭内衬材料等的生产与制造。

本文引用格式

雍耀维 , 赵瑞恒 , 王军 , 张帅 . 铜合金表面激光熔覆镍基复合涂层性能分析[J]. 航空学报, 2022 , 43(4) : 525604 -525604 . DOI: 10.7527/S1000-6893.2021.25604

Abstract

The copper alloy is widely used in the aerospace field because of its excellent characteristics. To improve the mechanical properties of copper alloys, an enhanced composite coating was successfully fabricated onto a copper substrate by laser cladding through adding mixture of ZrO2 and WC into Ni60 powder. The microstructure, interfacial composition, phase composition, hardness and wear resistance of the cladding layer were characterized and tested by means of Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), and Energy Disperse Spectroscopy (EDS). The results show that the hardness of the coating was improved significantly by the strengthening phase of the carbides such as WC, ZrC, M23C6 and (W,Zr) C in the composite alloy coating. The hardness and wear resistance at room and high temperature of the alloy coating were estimated. It is found that both the hardness and wear resistance of the reinforced copper substrate was significantly improved. The hardness of the copper alloy was improved from 90 HV0.2 to 620 HV0.2 after reinforcing; meanwhile, the friction coefficient was decreased, and its wear resistance was improved. Especially, the resistance at high temperature was improved significantly by about 20 times. Therefore, the Ni-based alloy coating reinforced can effectively improve the mechanical properties of the copper substation, and can play a practical role in extending the service life of products such as crystallizer and chamber liner in the rocket engine.

参考文献

[1] YAN H, ZHANG J, ZHANG P L, et al. Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold[J]. Surface and Coatings Technology, 2013, 232:362-369.
[2] LI M Y, CHAO M J, LIANG E J, et al. Improving wear resistance of pure copper by laser surface modification[J]. Applied Surface Science, 2011, 258(4):1599-1604.
[3] TAZEGUL O, DYLMISHI V, CIMENOGLU H. Copper matrix composite coatings produced by cold spraying process for electrical applications[J]. Archives of Civil and Mechanical Engineering, 2016, 16(3):344-350.
[4] LIU Y, XU T H, LIU Y, et al. Wear and heat shock resistance of Ni-WC coating on mould copper plate fabricated by laser[J]. Journal of Materials Research and Technology, 2020, 9(4):8283-8288.
[5] 闻光远. 火箭发动机内衬CuAgZr合金时效析出行为及力学性能[D]. 哈尔滨:哈尔滨工业大学, 2016:1-17. WEN G Y. The ageing behavior and mechanical properties of CuAgZr alloy for combustion chamber liner in rocket engine[D]. Harbin:Harbin Institute of Technology, 2016:1-17(in Chinese).
[6] 姜业欣, 娄花芬, 解浩峰, 等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5):84-92. JIANG Y X, LOU H F, XIE H F, et al. Development status and prospects of advanced copper alloy[J]. Strategic Study of CAE, 2020, 22(5):84-92(in Chinese).
[7] SOBOLEV V V, GUILEMANY J M, CALERO J A. Heat transfer during the formation of an HVOF sprayed WC-Co coating on a copper substrate[J]. Journal of Materials Processing Technology, 1999, 96(1-3):1-8.
[8] CHEN S Y, LIANG J, LIU C S, et al. Preparation of a novel Ni/Co-based alloy gradient coating on surface of the crystallizer copper alloy by laser[J]. Applied Surface Science, 2011, 258(4):1443-1450.
[9] CALLEJA A, TABERNERO I, FERNÁNDEZ A, et al. Improvement of strategies and parameters for multi-axis laser cladding operations[J]. Optics and Lasers in Engineering, 2014, 56:113-120.
[10] LV X, ZHAN Z J, CAO H Y, et al. Microstructure and properties of the laser cladded in situ ZrB2-ZrC/Cu composite coatings on copper substrate[J]. Surface and Coatings Technology, 2020, 396:125937.
[11] YIN J, WANG D Z, MENG L, et al. High-temperature slide wear of Ni-Cr-Si metal silicide based composite coatings on copper substrate by laser-induction hybrid cladding[J]. Surface and Coatings Technology, 2017, 325:120-126.
[12] LIU Y, LIU Y, GAO Y L, et al. Microstructure and properties of Ni-Co composite cladding coating on mould copper plate[J]. Materials, 2019, 12(17):2782.
[13] PEREIRA J C, ZAMBRANO J C, RAYÓN E, et al. Mechanical and microstructural characterization of MCrAlY coatings produced by laser cladding:The influence of the Ni, Co and Al content[J]. Surface and Coatings Technology, 2018, 338:22-31.
[14] NG K W, MAN H C, CHENG F T, et al. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts[J]. Applied Surface Science, 2007, 253(14):6236-6241.
[15] 徐建林, 杨波, 高威, 等. 铝青铜表面激光熔覆层组织与性能研究[J]. 航空材料学报, 2009, 29(1):63-67. XU J L, YANG B, GAO W, et al. Microstructure and performance of laser cladding on surface of aluminum bronze[J]. Journal of Aeronautical Materials, 2009, 29(1):63-67(in Chinese).
[16] DUAN X X, GAO S Y, DONG Q, et al. Reinforcement mechanism and wear resistance of Al2O3/Fe-Cr-Mo steel composite coating produced by laser cladding[J]. Surface and Coatings Technology, 2016, 291:230-238.
[17] 王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J]. 航空学报, 2002, 23(5):473-478. WANG H M. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5):473-478(in Chinese).
[18] TRAN V N, YANG S, PHUNG T A. Microstructure and properties of Cu/TiB2 wear resistance composite coating on H13 steel prepared by in situ laser cladding[J]. Optics & Laser Technology, 2018, 108:480-486.
[19] LI M, HUANG J, ZHU Y Y, et al. Effect of heat input on the microstructure of in situ synthesized TiN-TiB/Ti based composite coating by laser cladding[J]. Surface and Coatings Technology, 2012, 206(19-20):4021-4026.
[20] PIERSON H O. Carbides of group IV[M]//Handbook of Refractory Carbides and Nitrides. Amsterdam:Elsevier, 1996:55-80.
[21] 雍耀维, 张翔, 傅卫, 等. 激光熔覆原位制备ZrC颗粒增强涂层的行为特征[J]. 稀有金属材料与工程, 2018, 47(5):1625-1630. YONG Y W, ZHANG X, FU W, et al. Behavior characteristics of in situ formed ZrC particle reinforcement composite coating by laser cladding[J]. Rare Metal Materials and Engineering, 2018, 47(5):1625-1630(in Chinese).
[22] XU J Y, ZOU B L, ZHAO S M, et al. Fabrication and properties of ZrC-ZrB2/Ni cermet coatings on a magnesium alloy by atmospheric plasma spraying of SHS powders[J]. Ceramics International, 2014, 40(10):15537-15544.
[23] YONG Y W, FU W, DENG Q L, et al. Mechanism of Zr in in situ-synthesized particle reinforced composite coatings by laser cladding[J]. Rare Metals, 2017, 36(12):934-941.
[24] 张顺, 范景莲, 成会朝, 等. ZrC对W合金性能与组织结构的影响[J]. 稀有金属材料与工程, 2013, 42(7):1429-1432. ZHANG S, FAN J L, CHENG H C, et al. Influence of ZrC addition on properties and microstructure of W alloys[J]. Rare Metal Materials and Engineering, 2013, 42(7):1429-1432(in Chinese).
[25] DULEY W W. Materials processing[M]//Laser Processing and Analysis of Materials. Boston:Springer US, 1983:69-176.
[26] HEMMATI I, HUIZENGA R M, OCELÍK V, et al. Microstructural design of hardfacing Ni-Cr-B-Si-C alloys[J]. Acta Materialia, 2013, 61(16):6061-6070.
[27] WATANABE Y, SHIBUTA Y, SUZUKI T. A molecular dynamics study of thermodynamic and kinetic properties of solid-liquid interface for bcc iron[J]. ISIJ International, 2010, 50(8):1158-1164.
[28] YONG Y W, FU W, ZHANG X, et al. In-situ synthesis of WC/TaC reinforced nickel-based composite alloy coating by laser cladding[J]. Rare Metal Materials and Engineering, 2017, 46(11):3176-3181.
[29] 雍耀维. 激光熔覆镍基复合涂层工艺和性能的试验研究[D]. 上海:上海交通大学, 2018:103-108. YONG Y W. Study on process and performance of laser cladding nickel based composite coatings[D]. Shanghai:Shanghai Jiao Tong University, 2018:103-108(in Chinese).
[30] ZHANG T Q, WANG Y J, ZHOU Y, et al. Effect of ZrC particle size on microstructure and room temperature mechanical properties of ZrCp/W composites[J]. Materials Science and Engineering:A, 2010, 527(16-17):4021-4027.
[31] SUNDARAMOORTHY R, TONG S X, PAREKH D, et al. Effect of matrix chemistry and WC types on the performance of Ni-WC based MMC overlays deposited by plasma transferred arc (PTA) welding[J]. Wear, 2017, 376-377:1720-1727.
[32] KIM J H, PARK C, HA D, et al. WC-toughened (Zr, W)C solid solution carbides[J]. Journal of Alloys and Compounds, 2015, 637:183-187.
[33] 吴军, 朱冬冬, 杨日初, 等. 45钢轴面激光熔覆Ni60AA涂层工艺参数优化及摩擦磨损性能研究[J]. 激光与光电子学进展, 2021, 58(11):304-314. WU J, ZHU D D, YANG R C, et al. Parameters optimization and friction and wear properties for laser cladding Ni60AA coating on 45 steel shaft surface[J]. Laser & Optoelectronics Progress, 2021, 58(11):304-314(in Chinese).
[34] 傅卫. 铜结晶器激光熔覆双梯度涂层制备及热力行为研究[D]. 哈尔滨:哈尔滨工业大学, 2018:102-105. FU W. Investigation on preparation and thermo-mechanical behavior of laser cladding double gradient coating for copper crystallizer[D]. Harbin:Harbin Institute of Technology, 2018:102-105(in Chinese).
[35] 曹四龙, 王凌倩, 周健松. 激光熔覆NiCrMo和NiCrBSi涂层的微观组织及摩擦学性能研究[J]. 材料保护, 2021, 54(3):1-8, 33. CAO S L, WANG L Q, ZHOU J S. Microstructure and tribological properties of laser cladding NiCrMo and NiCrBSi alloy coatings[J]. Materials Protection, 2021, 54(3):1-8, 33(in Chinese).
[36] 李剑锋, 朱真才, 彭玉兴, 沈刚, 李翔. 原位合成M23C6-WC双相碳化物协同增强激光熔覆层摩擦磨损行为的研究[J]. 摩擦学学报, 2021, 41(6):843-857. LI J F, ZHU Z C, PENG Y X, et al. Friction and wear BEHAVIOR of in situ synthesized M23C6-WC dual-carbides synergistically reinforced laser cladding coatings[J]. Tribology, 2021, 41(6):843-857.
文章导航

/