机器人先进制造与装配技术专栏

考虑关节回差的工业机器人精度补偿方法

  • 田威 ,
  • 程思渺 ,
  • 李波 ,
  • 廖文和
展开
  • 1. 南京航空航天大学 机电学院, 南京 210016;
    2. 南京理工大学 机械工程学院, 南京 210094

收稿日期: 2021-03-25

  修回日期: 2021-05-12

  网络出版日期: 2021-06-29

基金资助

国家自然科学基金(52005254,52075256);国家重点研发计划(2018YFB1306800,2019YFB1310101);国防基础科研项目(JCKY2018605C002)

An error compensation method of an industrial robot with joint backlash

  • TIAN Wei ,
  • CHENG Simiao ,
  • LI Bo ,
  • LIAO Wenhe
Expand
  • 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2021-03-25

  Revised date: 2021-05-12

  Online published: 2021-06-29

Supported by

National Natural Science Foundation of China (52005254, 52075256); National Key R&D Program of China (2018YFB1306800, 2019YFB1310101); National Defense Basic Scientific Research Program of China (JCKY2018605C002)

摘要

工业机器人由于绝对定位精度低的缺点一直难以应用于航空航天高精制造领域。影响机器人定位误差的因素较多,对精确建立其误差模型提出了严峻的挑战。现有的建模方法通常将机器人定位误差与其位姿关联,忽略了同一位姿下关节回差对其定位误差的影响。为提高工业机器人绝对定位精度,提出了一种考虑关节回差的工业机器人误差相似度精度补偿方法。基于改进的Denavit-Hartenberg模型建立了包含机器人几何误差、坐标系误差和传动误差的综合辨识模型,利用最小二乘法辨识了关节回差。根据辨识得到的关节回差等参数构建了误差相似度模型,使用3种型号的机器人验证了该方法对提高机器人绝对定位精度的可行性和通用性,最终通过KUKA KR500-3机器人进行了制孔试验验证。试验结果表明,该方法相较于传统方法将机器人定位误差降低了约0.1 mm,精度提高了30%以上,制孔孔位精度从0.701 mm提升至0.134 mm,为有效提高工业机器人的绝对定位精度提供了一种技术手段。

本文引用格式

田威 , 程思渺 , 李波 , 廖文和 . 考虑关节回差的工业机器人精度补偿方法[J]. 航空学报, 2022 , 43(5) : 625569 -625569 . DOI: 10.7527/S1000-6893.2021.25569

Abstract

Because of the low absolute positioning accuracy, industrial robot is difficult to be used in aerospace high precision manufacturing. There are many factors that affect the positioning error of robot, which poses a severe challenge to the accurate establishment of its error model. The existing modeling methods usually associate the robot's positioning error with its pose, ignoring the influence of joint backlash on its positioning error in the same pose. In order to improve the absolute positioning accuracy of industrial robot, an error similarity accuracy compensation method for industrial robot considering joint backlash is proposed. Based on the improved Denavit-Hartenberg model, a comprehensive identification model including robot geometric error, coordinate system error and transmission error is established, and the joint backlash is identified by using the least square method. According to the identified parameters such as joint backlash, the error similarity model is constructed. Three types of robots are used to verify the feasibility and universality of the method for improving the absolute positioning accuracy of the robot. Finally, the drilling experiment is conducted by KUKA KR500-3 robot. The experimental results show that, compared with the traditional method, the positioning error of the robot is reduced by about 0.1 mm, the accuracy is improved by more than 30%, and the hole position accuracy is improved from 0.701 mm to 0.134 mm. From these results it is concluded that this method provides a technical means to effectively improve the absolute positioning accuracy of industrial robot.

参考文献

[1] GUO S, DIAO Q Z, XI F F. Vision based navigation for omni-directional mobile industrial robot[J]. Procedia Computer Science, 2017, 105:20-26.
[2] 王龙飞, 张丽艳, 叶南. 一种适用于曲面结构的机器人制孔误差在线补偿技术[J]. 航空学报, 2019, 40(10):292-306. WANG L F, ZHANG L Y, YE N. An on-line compensation technology for robotic drilling error suitable for curved structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):292-306(in Chinese).
[3] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10):1951-1960. QU W W, DONG H Y, KE Y L, et al. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960(in Chinese).
[4] SUMMERS M. Robot capability test and development of industrial robot positioning system for the aerospace industry[J]. SAE transactions, 2005, 114:1108-1118.
[5] BARKER L. Vector-algebra approach to extract Denavit-Hartenberg parameters of assembled robot arms:NASA TP 2912[R]. 1983.
[6] TIAN W, MEI D Q, LI P C, et al. Determination of optimal samples for robot calibration based on error similarity[J]. Chinese Journal of Aeronautics, 2015, 28(3):946-953.
[7] HAYATI S, MIRMIRANI M. Improving the absolute positioning accuracy of robot manipulators[J]. Journal of Robotic Systems, 1985, 2(4):397-413.
[8] OKAMURA K, PARK F C. Kinematic calibration using the product of exponentials formula[J]. Robotica, 1996, 14(4):415-421.
[9] YANG X, WU L, LI J, et al. A minimal kinematic model for serial robot calibration using POE formula[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(3):326-334.
[10] 周炜, 廖文和, 田威, 等. 面向飞机自动化装配的机器人空间网格精度补偿方法研究[J]. 中国机械工程, 2012, 23(19):2306-2311. ZHOU W, LIAO W H, TIAN W, et al. Robot accuracy compensation method of spatial grid for aircraft automatic assembly[J]. China Mechanical Engineering, 2012, 23(19):2306-2311(in Chinese).
[11] 周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J]. 机械工程学报, 2013, 49(3):42-48. ZHOU W, LIAO W H, TIAN W. Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation[J]. Journal of Mechanical Engineering, 2013, 49(3):42-48(in Chinese).
[12] TIAN W, ZENG Y F, ZHOU W, et al. Calibration of robotic drilling systems with a moving rail[J]. Chinese Journal of Aeronautics, 2014, 27(6):1598-1604.
[13] 石章虎, 何晓煦, 曾德标, 等. 基于误差相似性的移动机器人定位误差补偿[J]. 航空学报, 2020, 41(11):424105. SHI Z H, HEI X X, ZENG D B, et al. Error compensation method for mobile robot positioning based on error similarity[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):424105(in Chinese).
[14] ZENG Y, TIAN W, LI D W, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88:2745-2755
[15] ZENG Y, TIAN W, LIAO W H. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42:113-120.
[16] CAI Y, YUAN P, SHI Z, et al. Application of universal kriging for calibrating offline-programming industrial robots[J]. Journal of Intelligent & Robotic Systems, 2019, 94(2):339-348.
[17] CHEN D D, WANG T M, YUAN P J, et al. A positional error compensation method for industrial robots combining error similarity and radial basis function neural network[J]. Measurement Science and Technology, 2019, 30(12):125010.
[18] LIU S L, LIAO W H, TIAN W, et al. The problem in accuracy compensation of industrial robot[J]. International Robotics & Automation Journal, 2017, 3(2):282-283.
[19] HOVLAND G, HANSSEN S, GALLESTEY E, et al. Nonlinear identification of backlash in robot transmissions[C]//Proceedings of the 33rd International Symposium on Robotics, 2002:1-6.
[20] RUDERMAN M, HOFFMANN F, BERTRAM T. Modeling and identification of elastic robot joints with hysteresis and backlash[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10):3840-3847.
[21] SLAMANI M, NUBIOLA A, BONEV I A. Modeling and assessment of the backlash error of an industrial robot[J]. Robotica, 2012, 30(7):1167-1175.
[22] LEHMANN C, OLOFSSON B, NILSSON K, et al. Robot joint modeling and parameter identification using the clamping method[J]. IFAC Proceedings Volumes, 2013, 46(9):813-818.
[23] MOUSAVI A, AKBARZADEH A, SHARIATEE M, et al. Repeatability analysis of a SCARA robot with planetary gearbox[C]//20153rd RSI international conference on robotics and mechatronics (ICROM 2015), 2015:640-644.
[24] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.
[25] LI B, TIAN W, ZHANG C F, et al. Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35(2):346-360.
文章导航

/