航空发动机运行安全专栏

旋转裂纹叶片-弹性轮盘耦合系统振动特性

  • 吴志渊 ,
  • 闫寒 ,
  • 吴林潮 ,
  • 马辉 ,
  • 瞿叶高 ,
  • 张文明
展开
  • 1. 上海交通大学 机械系统与振动国家重点实验室, 上海 200240;
    2. 东北大学 机械工程与自动化学院, 沈阳 110819

收稿日期: 2021-03-03

  修回日期: 2021-04-07

  网络出版日期: 2021-06-29

基金资助

国家科技重大专项(2017-V-0009);国家自然科学基金(11972112)

Vibration characteristics of rotating cracked-blade-flexible-disk coupling system

  • WU Zhiyuan ,
  • YAN Han ,
  • WU Linchao ,
  • MA Hui ,
  • QU Yegao ,
  • ZHANG Wenming
Expand
  • 1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

Received date: 2021-03-03

  Revised date: 2021-04-07

  Online published: 2021-06-29

Supported by

National Science and Technology Major Project (2017-V-0009);National Natural Science Foundation of China (11972112)

摘要

航空发动机叶片长期在复杂激励的恶劣环境中工作, 极易造成损伤产生裂纹, 导致叶片-轮盘耦合系统的模态特性发生改变, 偏离初始设计状态。以旋转裂纹叶片-弹性轮盘系统为研究对象, 基于Kirchhoff板理论和Timoshenko梁理论模拟弹性轮盘和旋转叶片, 基于释放应变能和Castigliano原理将叶片裂纹等效为旋转刚度, 建立了裂纹叶片-弹性轮盘耦合系统连续体动力学模型;通过模态实验和有限元方法验证了提出方法的正确性;并分析了裂纹深度、裂纹位置、轮盘厚度和转速对裂纹叶片-弹性轮盘耦合系统固有特性的影响。研究结果表明:叶片裂纹导致初始正交的叶片-轮盘耦合模态振型破坏, 出现模态局部化现象, 且随着裂纹深度增大, 相应的频率减小;裂纹位置靠近叶尖, 模态局部化现象消失, 形成两阶正交模态;随着轮盘厚度的增加, 发生频率转向现象, 叶片弯曲模态与多个轮盘振型相关;随着转速的增加, 发生频率转向现象, 以及在高转速下叶片弯曲模态与其余阶次叶片弯曲模态相关。

本文引用格式

吴志渊 , 闫寒 , 吴林潮 , 马辉 , 瞿叶高 , 张文明 . 旋转裂纹叶片-弹性轮盘耦合系统振动特性[J]. 航空学报, 2022 , 43(9) : 625442 -625442 . DOI: 10.7527/S1000-6893.2021.25442

Abstract

Being exposed to severe environments with complex excitation for a long time, aero-engine blades can easily cause damage and cracks, which will change the modal characteristics of the blade-disk coupling system and deviate from the initial design state. Taking the rotating cracked-blade-flexible-disk coupling system as the research object, a dynamic model is established, in which the flexible disk and rotating blades are investigated based on Kirchhoff plate and Timoshenko beam theories; the blade crack is equivalent to the rotational stiffness based on the released strain energy and Castigliano's theorem. The proposed method is verified by modal test and finite element method. In addition, the effects of crack length, crack position, disk thickness and rotating speed on the inherent characteristics of the coupling system are investigated. The research results show that: the crack leads to the destruction of the initial orthogonal blade-disk coupling modal and the phenomenon of modal localization, and the corresponding frequencies decrease with the increase of the crack length; the closer the crack position is to the blade tip, the modes localization disappears, and two-order orthogonal modes are formed; with the increase of the disk thickness, the frequency veering phenomenon occurs, and the blade-bending mode is related to multi-order modes of the disk; with the increase of speed, the frequency veering phenomenon occurs, and the blade-bending mode is related to the rest blade-bending modes at the high rotational speed.

参考文献

[1] LIU M R, ZHU J, LIANG E B, et al. Vibration measurement on compressor rotor blades of aero-engine based on tip-timing[J]. Journal of Aerospace Power, 2019, 34(9): 1895-1904 (in Chinese). 刘美茹, 朱靖, 梁恩波, 等. 基于叶尖定时的航空发动机压气机叶片振动测量[J]. 航空动力学报, 2019, 34(9): 1895-1904.
[2] LIU M R, TENG G R, XIAO X, et al. Vibration measurement of turbine rotor blades of aero-engine based on blade tip-timing[J]. Journal of Aerospace Power, 2020, 35(9): 1954-1963 (in Chinese). 刘美茹, 滕光蓉, 肖潇, 等. 基于叶尖定时的航空发动机涡轮叶片振动测量[J]. 航空动力学报, 2020, 35(9): 1954-1963.
[3] ZENG J, CHEN K K, MA H, et al. Vibration response analysis of a cracked rotating compressor blade during run-up process[J]. Mechanical Systems and Signal Processing, 2019, 118: 568-583.
[4] XU H L. Research on key technology of crack detection in rotating blades by non-contact on-line blade tip-timing method[D]. Changsha: National University of Defense Technology, 2018: 1-18 (in Chinese). 徐海龙. 旋转叶片裂纹的叶端定时非接触在线检测关键技术研究[D]. 长沙: 国防科技大学, 2018: 1-18.
[5] LESAFFRE N, SINOU J J, THOUVEREZ F. Stability analysis of rotating beams rubbing on an elastic circular structure[J]. Journal of Sound and Vibration, 2007, 299(4-5): 1005-1032.
[6] CARASSALE L, MAURICI M, TRAVERSONE L. Reduced-order modeling of compressor blades by 1D finite elements[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015.
[7] SUN Q, MA H, ZHU Y P, et al. Comparison of rubbing induced vibration responses using varying-thickness-twisted shell and solid-element blade models[J]. Mechanical Systems and Signal Processing, 2018, 108: 1-20.
[8] LIU C, JIANG D X. Crack modeling of rotating blades with cracked hexahedral finite element method[J]. Mechanical Systems and Signal Processing, 2014, 46(2): 406-423.
[9] XIE J S, ZI Y Y, ZHANG M Q, et al. A novel vibration modeling method for a rotating blade with breathing cracks[J]. Science China Technological Sciences, 2019, 62(2): 333-348.
[10] BEHZAD M, GHADAMI A, MAGHSOODI A, et al. Vibration based algorithm for crack detection in cantilever beam containing two different types of cracks[J]. Journal of Sound and Vibration, 2013, 332(24): 6312-6320.
[11] DADO M H F, ABUZEID O. Coupled transverse and axial vibratory behaviour of cracked beam with end mass and rotary inertia[J]. Journal of Sound and Vibration, 2003, 261(4): 675-696.
[12] ZHAO C G, ZENG J, MA H, et al. Dynamic analysis of cracked rotating blade using cracked beam element[J]. Results in Physics, 2020, 19: 103360.
[13] YANG L H, YANG Z S, MAO Z, et al. Dynamic characteristic analysis of rotating blade with transverse crack—part Ⅰ: Modeling, modification, and validation[J]. Journal of Vibration and Acoustics, 2021, 143(5): 051010.
[14] HUANG B W, KUANG J H. Variation in the stability of a rotating blade disk with a local crack defect[J]. Journal of Sound and Vibration, 2006, 294(3): 486-502.
[15] KUANG J H, HUANG B W. The effect of blade crack on mode localization in rotating bladed disks[J]. Journal of Sound and Vibration, 1999, 227(1): 85-103.
[16] HUANG B W. Effect of number of blades and distribution of cracks on vibration localization in a cracked pre-twisted blade system[J]. International Journal of Mechanical Sciences, 2006, 48(1): 1-10.
[17] FANG X, TANG J, JORDAN E, et al. Crack induced vibration localization in simplified bladed-disk structures[J]. Journal of Sound and Vibration, 2006, 291(1-2): 395-418.
[18] SHE H X, LI C F, TANG Q S, et al. Veering and merging analysis of nonlinear resonance frequencies of an assembly bladed disk system[J]. Journal of Sound and Vibration, 2021, 493: 115818.
[19] CHIU Y J, HUANG S C. The influence of a cracked blade on rotor's free vibration[J]. Journal of Vibration and Acoustics, 2008, 130(5): 054502.
[20] YUAN H Q. Rotor dynamics fundamentals[M]. Beijing: Metallurgical Industry Press, 2013: 227-235 (in Chinese). 袁惠群. 转子动力学基础[M]. 北京: 冶金工业出版社, 2013: 227-235.
[21] MA H, LU Y, WU Z Y, et al. A new dynamic model of rotor-blade systems[J]. Journal of Sound and Vibration, 2015, 357: 168-194.
[22] OKABE A, KUDO T, SHIOHATA K, et al. Reduced modeling for turbine rotor-blade coupled bending vibration analysis[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(2): 022502.
文章导航

/