论文

一种基于多操纵面控制分配的IDLC人工着舰精确控制方法

  • 张志冰 ,
  • 张秀林 ,
  • 王家兴 ,
  • 史静平
展开
  • 1. 航空工业沈阳飞机设计研究所, 沈阳 110035;
    2. 西北工业大学 自动化学院, 西安 710089

收稿日期: 2021-04-15

  修回日期: 2021-05-15

  网络出版日期: 2021-06-18

基金资助

陕西省自然科学基础研究计划(2019 JM-163)

An IDLC landing control method of carrier-based aircraft based on control allocation of multiple control surfaces

  • ZHANG Zhibing ,
  • ZHANG Xiulin ,
  • WANG Jiaxing ,
  • SHI Jingping
Expand
  • 1. AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China;
    2. School of Automation, Northwestern Polytechnical University, Xi'an 710089, China

Received date: 2021-04-15

  Revised date: 2021-05-15

  Online published: 2021-06-18

Supported by

Natural Science Basic Research Program of Shaanxi (2019 JM-163)

摘要

传统舰载机采用纵杆控制迎角,油门杆控制下滑的着舰控制方式存在着操纵通道功能耦合,航迹与姿态耦合,着舰精度不高等多种不足。受舰尾流扰动、航母甲板运动等不利因素的影响,飞行员需要进行高频次的下滑修正操纵,身心负担极重。针对这一问题,在对美军魔毯技术(MAGIC CARPET)系统构成与着舰过程分析的基础上,针对三翼面布局飞机提出了一种基于多操纵面控制分配的综合直接力控制(IDLC)人工着舰精确控制方法。仿真分析表明:基于特征结构配置(EA)解耦设计直接力着舰控制方法能够实现飞机纵向运动长周期模态与短周期模态的解耦、油门通道与纵杆通道的解耦,具有抑制舰尾流扰动、稳定飞机下滑状态、减小操纵负担的功能;而基于多操纵面控制分配的设计方案通过鸭翼正偏增升,不但充分发挥了三翼面布局飞机气动舵面增升控制的优势,还减小了平尾配平出舵量,在一定程度上减小了平尾上偏所带来的升力损失。

本文引用格式

张志冰 , 张秀林 , 王家兴 , 史静平 . 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报, 2021 , 42(8) : 525840 -525840 . DOI: 10.7527/S1000-6893.2021.25840

Abstract

The traditional landing control mode of the carrier-based aircraft, which uses the pitch lever to control the angle of attack and the throttle lever to control the glide, has many shortcomings, such as the coupling of control channel, coupling of track and attitude, and low landing accuracy. Due to the adverse factors such as ship wake disturbance and carrier deck motion, pilots need to frequently conduct glide correction control, which is a heavy physical and mental burden for the pilots. Based on the analysis of the structure and landing process of the U.S. military MAGIC CARPET system, an Integrated Direct Lift Control (IDLC) landing control method for the triplane configuration aircraft is proposed based on control allocation of multiple control surfaces. The simulation results show that the direct force landing control method based on the Eigen-Structure Assignment(EA) decoupling design can realize the decoupling of long period mode and short period mode of aircraft longitudinal motion, and decoupling of the throttle channel and the longitudinal control channel. The design scheme based on control allocation not only gives full play to the aerodynamic advantages of the three wing configuration aircraft, but also reduces the trim amount of the horizontal tail and decreases the lift loss caused by the upward deflection of the horizontal tail.

参考文献

[1] 张志冰, 甄子洋, 江驹, 等. 舰载机自动着舰引导与控制综述[J].南京航空航天大学学报, 2018, 50(6):734-744. ZHANG Z B, ZHEN Z Y, JIANG J, et al. Review on development in guidance and control of automatic carrier landing of carrier-based aircraft[J].Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(6):734-744(in Chinese).
[2] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J].航空学报, 2017, 38(2):020435. ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):020435(in Chinese).
[3] 武恒州, 罗福平, 石星辰, 等. 全自动着舰技术现状与发展趋势分析[J].飞机设计, 2020, 40(6):1-5. WU H Z, LUO F P, SHI X C, et al. Analysis on the status quo and development trend of automatic carrier landing technology[J].Aircraft Design, 2020, 40(6):1-5(in Chinese).
[4] 王新华, 杨一栋, 朱华. 低动压着舰状态下飞机的操纵特性研究[J].飞行力学, 2007, 25(4):29-32, 36. WANG X H, YANG Y D, ZHU H. Research of handling characteristics of aircraft in low dynamic pressure situation[J].Flight Dynamics, 2007, 25(4):29-32, 36(in Chinese).
[5] RUDOWSKY T, HYNES M, LUTER M, et al. Review of the carrier approach criteria for carrier-based aircraft-phase I:Final report[R]. Defense Technical Information Center, 2002.
[6] GRALOW L J. Benefits of automation in carrier based fixed wing aircraft launch and recovery[R]. Redondo Beach:Naval Air Test Center, 2013.
[7] SHAFER D M, PAUL R C, KING M J, et al. Aircraft carrier landing demonstration using manual control by a ship-based observer[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019
[8] DENHAM J W. Project MAGIC CARPET: "advanced controls and displays for precision carrier landings"[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016
[9] 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J].系统工程与电子技术, 2018, 40(9):2079-2091. WU W H, WANG J, GAO L, et al. Analysis on MAGIC CARPET carrier landing technology[J].Systems Engineering and Electronics, 2018, 40(9):2079-2091(in Chinese).
[10] GREEN B E, FINDLAY D. CFD analysis of the F/A-18E super hornet during aircraft-carrier landing high-lift aerodynamic conditions[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016
[11] 陈国军, 张贞, 茅坪. 美军舰载机进近程序和标准化设计研究[J].航空标准化与质量, 2019(5):8-11, 18. CHEN G J, ZHANG Z, MAO P. Research on US army carrier-based aircraft approach procedure and standardization design[J].Aeronautic Standardization & Quality, 2019(5):8-11, 18(in Chinese).
[12] 杨一栋, 代世俊, 余勇,等. 抑制舰尾流扰动的飞机着舰导引控制策略[J].海军航空工程学院学报, 2003, 18(1):115-120. YANG Y D, DAI S J, YU Y, et al. The control scheme of the restraint air wake disturbance carrier landing system[J].Journal of Naval Aeronautical Engineering Institute, 2003, 18(1):115-120(in Chinese).
[13] GREEN B E, FINDLAY D. CFD analysis of the F/A-18E super hornet during aircraft-carrier landing high-lift aerodynamic conditions[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[14] 田杰荣, 徐彦军. 甲板风对着舰下滑道的影响研究[J].飞行力学, 2019, 37(6):12-16. TIAN J R, XU Y J. Impact of wind over deck on carrier landing glide slope[J].Flight Dynamics, 2019, 37(6):12-16(in Chinese).
[15] 焦晓辉, 王鹏. 着舰环境对舰载机着舰的影响分析[J].科技创新与应用, 2019(16):20-21. JIAO X H, WANG P. Analysis of the influence of landing environment on carrier aircraft landing[J].Technology Innovation and Application, 2019(16):20-21(in Chinese).
[16] 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J].航空学报, 2019, 40(4):622328. DUAN Z Y, WANG W, GENG J Z, et al. Precision trajectory manual control technologies for carrier-based aircraft approaching and landing[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622328(in Chinese).
[17] 罗飞, 张军红, 王博, 等. 基于非线性动态逆的舰载机直接升力航迹控制[J].飞行力学, 2021, 39(1):40-45, 53. LUO F, ZHANG J H, WANG B, et al. Direct lift trajectory control for carrier aircraft based on NDI[J].Flight Dynamics, 2021, 39(1):40-45, 53(in Chinese).
[18] 罗飞,张军红,王博,等.基于直接力与动态逆的舰尾流抑制方法研究[J].航空学报, 2021, 42(7):124770.LUO F,et al. Research on air wake rejection based on direct lift control and nonlinear dynamic inversion control method[J].Acta Areonautica et Astronautica Sinica, 2021, 42(7):124770(in Chinese).
[19] 史静平. 直接力纵向解耦控制方法研究与实时仿真系统[D]. 西安:西北工业大学, 2007. SHI J P. The research on the longitudinal direct lift control decoupling method and real-time simulation system[D]. Xi'an:Northwestern Polytechnical University, 2007(in Chinese).
[20] GRALOW L J, PEACE L J, SHIPLEY J L. Evaluation of the direct lift control system installed in the F-8C airplane[R]. Redondo Beach:Naval Air Test Center, 1965.
[21] 赵振宇, 韩维, 陈俊锋. 飞行员着舰下滑轨迹跟踪操纵策略研究[J].飞行力学, 2015, 33(6):519-522. ZHAO Z Y, HAN W, CHEN J F. Research of pilot control strategy to pursuit flight path in carrier landing[J].Flight Dynamics, 2015, 33(6):519-522(in Chinese).
[22] 梁智生, 蔡俊杰, 郑小春. 舰载机动力补偿系统设计[J].舰船科学技术, 2019, 41(6):214-216. LIANG Z S, CAI J J, ZHENG X C. Design of power compensation system for shipborne aircraft[J].Ship Science and Technology, 2019, 41(6):214-216(in Chinese).
[23] 董然, 原新, 张智, 等. 进场动力补偿器对自动着舰系统的影响[J].飞行力学, 2017, 35(1):34-38. DONG R, YUAN X, ZHANG Z, et al. Influence of approach power compensator on ACLS[J].Flight Dynamics, 2017, 35(1):34-38(in Chinese).
[24] SODEL K M, SHAPIRO E Y. Eigenstructure assignment:A Tutorial[C]//Proceedings of the 1985 American Conference on Control,1985:456-467
[25] 李帆. 不确定性系统的解耦控制与稳定裕度分析[D]. 西安:西北工业大学, 2001. LI F. The decoupling control study and stability margin evaluation of multivariable uncertain systems[D]. Xi'an:Northwestern Polytechnical University, 2001(in Chinese).
文章导航

/