论文

基于预设性能的四旋翼无人机编队安全控制

  • 郭洪振 ,
  • 陈谋
展开
  • 南京航空航天大学 自动化学院, 南京 210016

收稿日期: 2021-04-15

  修回日期: 2021-05-12

  网络出版日期: 2021-06-18

基金资助

国家自然科学基金(61825302,U2013201);江苏省重点研发计划(社会发展)(BE2020704)

Safety formation control of quadrotor UAVs based on prescribed performance

  • GUO Hongzhen ,
  • CHEN Mou
Expand
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2021-04-15

  Revised date: 2021-05-12

  Online published: 2021-06-18

Supported by

National Natural Science Foundation of China (61825302, U2013201); Jiangsu Province Key R&D Plan Project (Social Development)(BE2020704)

摘要

针对四旋翼无人机编队系统存在模型不确定性、未知外部干扰与内部碰撞等问题,提出一种基于预设性能的安全控制方法。首先使用预设性能函数结合误差转换方法,将防止内部碰撞的不等式约束问题转换为无约束问题。同时针对模型中的不确定项,使用神经网络进行逼近;针对神经网络逼近误差与未知外部干扰组成的复合干扰,使用非线性干扰观测器进行估计,并分别设计位置与姿态子系统控制器,避免了编队内四旋翼无人机的碰撞。然后借助Lyapunov方法证明了闭环系统所有信号的收敛性。最后通过数值仿真验证了所提控制方法的有效性。

本文引用格式

郭洪振 , 陈谋 . 基于预设性能的四旋翼无人机编队安全控制[J]. 航空学报, 2021 , 42(8) : 525789 -525789 . DOI: 10.7527/S1000-6893.2021.25789

Abstract

Quadrotor UAVs formation suffers from the problems of model uncertainties, unknown external disturbances and collision between UAVs. In this paper, a safety control scheme is proposed based on prescribed performance. Firstly, the inequality constraint problem which will prevent collision between UAVs is transformed into the unconstrained problem according to the Prescribed Performance Function (PPF) and the error transfer function. To tackle model uncertainty, the neural network is used for approximation. The unknown approximation errors and the unknown external disturbances are treated as a compound disturbance, which is then estimated by the nonlinear disturbance observer. By using the transformed tracking errors and the values obtained by the observer, controllers are designed for the position and attitude subsystems, thus the collision between quadrotor UAVs is avoided. Then, the convergence of all the closed-loop system signals under the designed controller is proved by the Lyapunov method. Finally, numerical simulations verify the effectiveness of the proposed scheme.

参考文献

[1] NAIR R R, BEHERA L, KUMAR S. Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1):39-47.
[2] LIAO R W, HAN L, DONG X W, et al. Finite-time formation-containment tracking for second-order multi-agent systems with a virtual leader of fully unknown input[J]. Neurocomputing, 2020, 415:234-246.
[3] KAMEL M A, YU X, ZHANG Y M. Formation control and coordination of multiple unmanned ground vehicles in normal and faulty situations:a review[J]. Annual Reviews in Control, 2020, 49:128-144.
[4] WANG Y Q, WU Q H, WANG Y. Distributed cooperative control for multiple quadrotor systems via dynamic surface control[J]. Nonlinear Dynamics, 2014, 75(3):513-527.
[5] LIU H, MA T, LEWIS F L, et al. Robust formation control for multiple quadrotors with nonlinearities and disturbances[J]. IEEE Transactions on Cybernetics, 2020, 50(4):1362-1371.
[6] ISLAM S, LIU P X, EL SADDIK A. Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1563-1571.
[7] ZHAO W B, LIU H, LEWIS F L, et al. Data-driven optimal formation control for quadrotor team with unknown dynamics[J]. IEEE Transactions on Cybernetics, 9486, PP(99):1-10.
[8] ZHAO W B, LIU H, LEWIS F L. Robust formation control for cooperative underactuated quadrotors via reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 3711, PP(99):1-11.
[9] ZHANG W Q, DONG C Y, RAN M P, et al. Fully distributed time-varying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer[J]. Chinese Journal of Aeronautics, 2020, 33(11):2907-2920.
[10] SONG Y D, HE L, ZHANG D, et al. Neuroadaptive fault-tolerant control of quadrotor UAVs:A more affordable solution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7):1975-1983.
[11] YU Z Q, LIU Z X, ZHANG Y M, et al. Decentralized fault-tolerant cooperative control of multiple UAVs with prescribed attitude synchronization tracking performance under directed communication topology[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(5):685-700.
[12] LIANG Y Q, DONG Q, ZHAO Y J. Adaptive leader-follower formation control for swarms of unmanned aerial vehicles with motion constraints and unknown disturbances[J]. Chinese Journal of Aeronautics, 2020, 33(11):2972-2988.
[13] WANG R, LIU J K. Adaptive formation control of quadrotor unmanned aerial vehicles with bounded control thrust[J]. Chinese Journal of Aeronautics, 2017, 30(2):807-817.
[14] HUANG Y F, LIU W, LI B, et al. Finite-time formation tracking control with collision avoidance for quadrotor UAVs[J]. Journal of the Franklin Institute, 2020, 357(7):4034-4058.
[15] JIA Z Y, WANG L L, YU J Q, et al. Distributed adaptive neural networks leader-following formation control for quadrotors with directed switching topologies[J]. ISA Transactions, 2019, 93:93-107.
[16] ZHANG W Q, DONG C Y, RAN M P, et al. Fully distributed time-varying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer[J]. Chinese Journal of Aeronautics, 2020, 33(11):2907-2920.
[17] GARCÍA-DELGADO L, DZUL A, SANTIBÁÑEZ V, et al. Quadrotors formation based on potential functions with obstacle avoidance[J]. IET Control Theory & Applications, 2012, 6(12):1787-1802.
[18] ARUL S H, MANOCHA D. DCAD:Decentralized collision avoidance with dynamics constraints for agile quadrotor swarms[J]. IEEE Robotics and Automation Letters, 2020, 5(2):1191-1198.
[19] DONG X W, HU G Q. Time-varying formation tracking for linear multiagent systems with multiple leaders[J]. IEEE Transactions on Automatic Control, 2017, 62(7):3658-3664.
[20] REKABI F, SHIRAZI F A, SADIGH M J. Distributed nonlinear H∞ control algorithm for multi-agent quadrotor formation flying[J]. ISA Transactions, 2020, 96:81-94.
[21] CHEN M, SHI P, LIM C C. Adaptive neural fault-tolerant control of a 3-DOF model helicopter system[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(2):260-270.
[22] CHEN M, GE S S, REN B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints[J]. Automatica, 2011, 47(3):452-465.
[23] LEI X S, LU P. The adaptive radial basis function neural network for small rotary-wing unmanned aircraft[J]. IEEE Transactions on Industrial Electronics, 2014, 61(9):4808-4815.
[24] BECHLIOULIS C P, ROVITHAKIS G A. Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems[J]. IEEE Transactions on Automatic Control, 2010, 55(5):1220-1226.
[25] CHEN M. Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4):3359-3368.
[26] VAMVOUDAKIS K G, LEWIS F L. Online actorcritic algorithm to solve the continuous-time infinite horizon optimal control problem[J]. Automatica, 2010, 46(5):878-888.
[27] ZHANG C, MA G F, SUN Y C, et al. Simple model-free attitude control design for flexible spacecraft with prescribed performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(8):2760-2771.
[28] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 2版. 北京:清华大学出版社, 2012. LIU J K. Sliding mode control design and matlab simulation[M]. 2nd ed. Beijing:Tsinghua University Press, 2012(in Chinese).
[29] YANG H L, JIANG B, YANG H, et al. Synchronization of multiple 3-DOF helicopters under actuator faults and saturations with prescribed performance[J]. ISA Transactions, 2018, 75:118-126.
文章导航

/