电子电气工程与控制

基于预测校正的落角约束计算制导方法

  • 刘子超 ,
  • 王江 ,
  • 何绍溟 ,
  • 李宇飞
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 北京理工大学 无人机自主控制技术北京市重点实验室, 北京 100081;
    3. 北京理工大学 信息与电子学院, 北京 100081

收稿日期: 2021-03-01

  修回日期: 2021-07-19

  网络出版日期: 2021-06-18

基金资助

空军装备部预先研究项目(3030209)

A computational guidance algorithm for impact angle control based on predictor-corrector concept

  • LIU Zichao ,
  • WANG Jiang ,
  • HE Shaoming ,
  • LI Yufei
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology Beijing 100081, China;
    2. Beijing Key Laboratory of UAV Autonomous Control, Beijing Institute of Technology, Beijing 100081, China;
    3. School of Information and Electronics Beijing Institute of Technology, Beijing 100081, China

Received date: 2021-03-01

  Revised date: 2021-07-19

  Online published: 2021-06-18

Supported by

Advanced Research Program of Air Force Equipment Department (3030209)

摘要

针对带有落角约束的导弹制导问题,提出一种基于预测校正思想的计算制导方法。根据导弹飞行状态与落角之间的映射关系设计了深度监督学习网络,在导弹飞行过程中基于观测信息实时预测落角;根据落角误差与控制指令之间的映射关系设计了深度强化学习模型,在比例导引律的基础上增加偏置项,基于预测落角误差实时输出偏置项,校正落角误差。引入深度监督学习网络解决了传统强化学习方法中的稀疏奖励问题。设计了仿真飞行实验训练深度监督学习网络与深度强化学习模型,然后测试了提出的计算制导方法的性能。仿真结果表明所设计的计算制导方法准确地实现了落角控制,在嵌入式计算机的计算精度高,实时性好,具备工程实用价值。

本文引用格式

刘子超 , 王江 , 何绍溟 , 李宇飞 . 基于预测校正的落角约束计算制导方法[J]. 航空学报, 2022 , 43(8) : 325433 -325433 . DOI: 10.7527/S1000-6893.2021.25433

Abstract

To solve the problem of missile guidance with constraint of terminal impact angle, a learning-based computational guidance algorithm is proposed based on the general predictor-corrector concept. A deep neural network is designed based on the relationship between the flight state and impact angle, to predict the exact terminal impact angle under proportional navigation guidance with realistic aerodynamic characteristics. A biased command to nullify the impact angle error is developed based on the relationship between impact angle error and the acceleration command, and the deep reinforcement learning techniques is utilized. The deep neural network is augmented into the reinforcement learning block to resolve the issue of sparse reward that has been observed in traditional reinforcement learning formulation. Extensive numerical simulations are conducted to verify the proposed algorithm. The simulation results show that the designed computational guidance method can realize impact angle control accurately. The guidance algorithm has high precision and low delay in embedded computer, which shows that the algorithm can be applied to engineering.

参考文献

[1] 王晓海, 孟秀云, 周峰, 等. 基于偏置比例导引的落角约束滑模制导律[J]. 系统工程与电子技术, 2021, 43(5): 1295-1302. WANG X H, MENG X Y, ZHOU F, et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigation[J]. Systems Engineering and Electronics, 2021, 43(5): 1295-1302 (in Chinese).
[2] RYOO C K, CHO H, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3): 483-492.
[3] RYOO C K, CHO H, TAHK M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732.
[4] 张友安, 黄诘, 孙阳平. 带有落角约束的一般加权最优制导律[J]. 航空学报, 2014, 35(3): 848-856. ZHANG Y A, HUANG J, SUN Y P. Generalized weighted optimal guidance laws with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 848-856 (in Chinese).
[5] ERER K S, MERTTOPÇUOGLU O. Indirect impact-angle-control against stationary targets using biased pure proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 700-704.
[6] ERER K S, OZGOREN M K. Control of impact angle using biased proportional navigation: AIAA-2013-5113[R] Reston: AIAA 2013.
[7] LIU J H, SHAN J Y, LIU Q. Optimal pulsed guidance law with terminal impact angle constraint[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(11): 1993-2005.
[8] PARK B G, KIM T H, TAHK M J. Range-to-go weighted optimal guidance with impact angle constraint and seeker’s look angle limits[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1241-1256.
[9] 郭建国, 韩拓, 周军, 等. 基于终端角度约束的二阶滑模制导律设计[J]. 航空学报, 2017, 38(2): 320217. GUO J G, HAN T, ZHOU J, et al. Second-order sliding-mode guidance law with impact angle constraint[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 320217 (in Chinese).
[10] HE S M, LIN D F, WANG J. Integral global sliding mode guidance for impact angle control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1843-1849.
[11] KIM H G, LEE J Y, KIM H J. Look angle constrained impact angle control guidance law for homing missiles with bearings-only measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 3096-3107.
[12] 李庆春, 张文生, 韩刚. 终端约束条件下末端制导律研究综述[J]. 控制理论与应用, 2016, 33(1): 1-12. LI Q C, ZHANG W S, HAN G. Review of terminal guidance law with terminal constraints[J]. Control Theory & Applications, 2016, 33(1): 1-12 (in Chinese).
[13] LU P. Introducing computational guidance and control[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 193.
[14] ZHANG Y A, WANG X L, MA G X. Impact time control guidance law with large impact angle constraint[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(11): 2119-2131.
[15] BANERJEE A, NABI M, RAGHUNATHAN T. Time-energy optimal guidance strategy for realistic interceptor using pseudospectral method[J]. Transactions of the Institute of Measurement and Control, 2020, 42(13): 2361-2371.
[16] JUNG S, HWANG S, SHIN H, et al. Perception, guidance, and navigation for indoor autonomous drone racing using deep learning[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2539-2544.
[17] 杨希祥, 杨慧欣, 王鹏. 伪谱法及其在飞行器轨迹优化设计领域的应用综述[J]. 国防科技大学学报, 2015, 37(4): 1-8. YANG X X, YANG H X, WANG P. Overview of pseudo-spectral method and its application in trajectory optimum design for flight vehicles[J]. Journal of National University of Defense Technology, 2015, 37(4): 1-8 (in Chinese).
[18] SHIN H S, HE S M, TSOURDOS A. A domain-knowledge-aided deep reinforcement learning approach for flight control design[EB/OL]. (2019-08-19)[2021-06-05]. https://arxiv.org/abs/1908.06884.
[19] 方科, 张庆振, 倪昆, 等. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5): 321958. FANG K, ZHANG Q Z, NI K, et al. Time-coordinated reentry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 321958 (in Chinese).
[20] SHALUMOV V. Cooperative online Guide-Launch-Guide policy in a target-missile-defender engagement using deep reinforcement learning[J]. Aerospace Science and Technology, 2020, 104: 105996.
[21] 余跃, 王宏伦. 基于深度学习的高超声速飞行器再入预测校正容错制导[J]. 兵工学报, 2020, 41(4): 656-669. YU Y, WANG H L. Deep learning-based reentry predictor-corrector fault-tolerant guidance for hypersonic vehicles[J]. Acta Armamentarii, 2020, 41(4): 656-669 (in Chinese).
[22] FURFARO R, SCORSOGLIO A, LINARES R, et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica, 2020, 171: 156-171.
[23] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. CoRR, 2014, abs/1412:6980.
[24] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2017-07-20)[2021-06-05] https://arxiv.org/abs/1707.06347.
[25] HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1624-1633.
[26] SCHULMAN J, LEVINE S, MORITZ P, et al. Trust region policy optimization[J]. CoRR, 2015, abs/1502:05477.
[27] LI H Y, HE S M, WANG J, et al. Near-optimal midcourse guidance for velocity maximization with constrained arrival angle[J]. Journal of Guidance, Control, and Dynamics, 2020, 44(1): 172-180.
[28] ZARCHAN P. Tactical and strategic missile guidance: An introduction[M]. 7th ed. Volume 1.Reston: AIAA, 2019.
[29] 佚名. STM32神经网络开发工具箱将AI技术引入边缘和节点嵌入式设备[J]. 单片机与嵌入式系统应用, 2019, 19(2): 94. Anonymous. Neural network development toolbox introduces AI technology into edge and node embedded devices[J]. Microcontrollers & Embedded Systems, 2019, 19(2): 94 (in Chinese).
[30] STMicroelectronics. X-CUBE-AI-AI expansion pack for STM32CubeMX -STMicroelectronics [EB/OL].(2021-03-08)[2021-06-05]. https://www.st.com/en/embedded-software/x-cube-ai.html.
文章导航

/