电子电气工程与控制

基于STPA-TOPAZ的低空无人机冲突解脱安全性分析

  • 张宏宏 ,
  • 甘旭升 ,
  • 孙静娟 ,
  • 赵顾颢 ,
  • 韩宝华
展开
  • 1. 空军工程大学 空管领航学院, 西安 710051;
    2. 国家空管防相撞技术重点实验室, 西安 710051;
    3. 中国人民解放军 31664部队, 格尔木 816000

收稿日期: 2021-02-01

  修回日期: 2021-06-21

  网络出版日期: 2021-06-18

基金资助

国家自然科学基金(61601497);陕西省自然科学基础研究计划(2022JM-412);空军工程大学校长基金(XZJ2020005)

Analysis of low altitude UAV conflict resolution safety based on STPA-TOPAZ

  • ZHANG Honghong ,
  • GAN Xusheng ,
  • SUN Jingjuan ,
  • ZHAO Guhao ,
  • HAN Baohua
Expand
  • 1. Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an 710051, China;
    2. National Key Laboratory of Air Traffic Collision Prevention, Xi'an 710051, China;
    3. Unit 31664 of PLA, Golmud 816000, China

Received date: 2021-02-01

  Revised date: 2021-06-21

  Online published: 2021-06-18

Supported by

National Natural Science Foundation of China (61601497); Natural Science Basic Research Program of Shaanxi Province (2022JM-412);The President Foundation of Air Force Engineering University (XZJ2020005)

摘要

为防止低空无人机(UAV)冲突解脱过程中发生危险接近或事故,将该过程的安全问题转化为控制问题,提出基于STPA-TOPAZ的低空无人机冲突解脱安全性分析方法。首先基于系统理论的事故模型和过程(STAMP),构建冲突解脱系统中的安全控制结构。然后利用系统理论过程分析(STPA)根据系统运行的上下文信息确定系统级事故和危险,识别出冲突解脱过程中的不安全控制行为,并分析产生不安全控制行为的关键致因。最后利用TOPAZ方法定量描述致因因素对系统安全的影响程度,找到制约系统安全的瓶颈。仿真结果表明了STPA-TOPAZ方法的有效性与优越性。

本文引用格式

张宏宏 , 甘旭升 , 孙静娟 , 赵顾颢 , 韩宝华 . 基于STPA-TOPAZ的低空无人机冲突解脱安全性分析[J]. 航空学报, 2022 , 43(7) : 325354 -325354 . DOI: 10.7527/S1000-6893.2021.25354

Abstract

To prevent the occurrence of dangerous approaches or accidents in the low-altitude UAV conflict resolution process, the security problem in the process was transformed into the control problem, and a conflict resolution security analysis method for the low altitude UAV was proposed based on STPA-TOPAZ. Firstly, based on Syster-Theoretic Accident Modeling and Processes (STAMP), the security control structure in the conflict resolution system is constructed. Then System-Theoretic Process Analysis (STPA) is used to determine system-level accidents and hazards based on the context information of system operation, identify the unsafe control behaviors in the process of conflict resolution, and analyze the key causes of unsafe control behaviors. Finally, the Traffic Organization and Perturbation Analyzer (TOPAZ) method is used to quantitatively describe the influence degree of the causal factors on system security, and identify the security bottleneck that restricts the system. The simulation results show the effectiveness and superiority of the STPA-TOPAZ method.

参考文献

[1] 全权,李刚,柏艺琴,等.低空无人机交通管理概览与建议[J].航空学报, 2020, 41(1):023238. QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic management:an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):023238(in Chinese).
[2] THIBBOTUWAWA A, BOCEWICZ G, NIELSEN P, et al. Unmanned aerial vehicle routing problems:a literature review[J]. Applied Sciences, 2020, 10(13):4504.
[3] LIU Y L, DAI H N, WANG Q, et al. Unmanned aerial vehicle for internet of everything:opportunities and challenges[J]. Computer Communications, 2020, 155:66-83.
[4] HUANG S N, TEO R S H, TAN K K. Collision avoidance of multi unmanned aerial vehicles:a review[J]. Annual Reviews in Control, 2019, 48:147-164.
[5] PURBA J H, SONY TJAHYANI D T, WIDODO S, et al. Fuzzy probability based event tree analysis for calculating core damage frequency in nuclear power plant probabilistic safety assessment[J]. Progress in Nuclear Energy, 2020, 125:103376.
[6] MARES R E, NAGY M, RADU I. Using the event tree analysis in the investigation of a work accident[J]. MATEC Web of Conferences, 2020, 305:00088.
[7] JONG J C, LAI Y C R, YOUNG C C, et al. Application of fault tree analysis and Swiss cheese model to the overspeed derailment of puyuma train in Yilan, Taiwan[J]. Transportation Research Record:Journal of the Transportation Research Board, 2020, 2674(5):33-46.
[8] GUO X Y, MENG B, LIU Y W, et al. A human error mechanism for pilot based on fault tree analysis and Bayesian network[J]. Journal of Intelligent&Fuzzy Systems, 2020, 38(6):6863-6871.
[9] FAN C H, ZHU Y, LI W, et al. Consensus building in linguistic failure mode and effect analysis:a perspective based on prospect theory[J]. Quality and Reliability Engineering International, 2020, 36(7):2521-2546.
[10] CARMAN A L, VANDERPOOL R C, STRADTMAN L R, et al. Standardizing a federally qualified health center's preventive care processes:use of failure modes and effects analysis[J]. Health Care Management Review, 2020, 45(3):228-231.
[11] 王瑛,孙贇,李超.基于IDAC-STPA模型的战机飞行安全性分析与评价[J].系统工程与电子技术, 2019, 41(5):1056-1062. WANG Y, SUN Y, LI C. Aircraft flight safety analysis and evaluation based on IDAC-STPA model[J]. Systems Engineering and Electronics, 2019, 41(5):1056-1062(in Chinese).
[12] 王晴昊,胡剑波,姚登凯. STPA在进近着陆飞行安全分析中的研究及应用[J].系统工程理论与实践, 2018, 38(10):2703-2712. WANG Q H, HU J B, YAO D K. Research and application of STPA to flight safety analysis in approach and landing[J]. Systems Engineering-Theory&Practice, 2018, 38(10):2703-2712(in Chinese).
[13] YOUSEFI A, RODRIGUEZ HERNANDEZ M. Using a system theory based method (STAMP) for hazard analysis in process industry[J]. Journal of Loss Prevention in the Process Industries, 2019, 61:305-324.
[14] LEE S H, SHIN S M, HWANG J S, et al. Operational vulnerability identification procedure for nuclear facilities using STAMP/STPA[J]. IEEE Access, 2020, 8:166034-166046.
[15] TARAFDAR P, BOSE I. Systems theoretic process analysis of information security:the case of aadhaar[J]. Journal of Organizational Computing and Electronic Commerce, 2019, 29(3):209-222.
[16] DE SOUZA N P, DE AZEVEDO CASTRO CéSAR C, DE MELO BEZERRA J, et al. Extending STPA with STRIDE to identify cybersecurity loss scenarios[J]. Journal of Information Security and Applications, 2020, 55:102620.
[17] CHAAL M, VALDEZ BANDA O A, GLOMSRUD J A, et al. A framework to model the STPA hierarchical control structure of an autonomous ship[J]. Safety Science, 2020, 132:104939.
[18] UDDIN M I, AWAL Z I. Systems-theoretic approach to safety of inland passenger ship operation in Bangladesh[J]. Safety Science, 2020, 126:104629.
[19] LEVESON N. A new accident model for engineering safer systems[J]. Safety Science, 2004, 42(4):237-270.
[20] 胡剑波,李俊,郑磊,等.复杂系统安全性建模、分析、控制与仿真研究[J].火力与指挥控制, 2018, 43(7):1-9, 13. HU J B, LI J, ZHENG L, et al. Research summary on safety model, analysis, control and simulate for complex systems[J]. Fire Control&Command Control, 2018, 43(7):1-9, 13(in Chinese).
[21] STROEVE S H, BLOM H A P,(BERT) BAKKER G J. Systemic accident risk assessment in air traffic by Monte Carlo simulation[J]. Safety Science, 2009, 47(2):238-249.
[22] BOSSE T, BLOM H A P, STROEVE S H, et al. An integrated multi-agent model for modelling hazards within air traffic management[C]//2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). Piscataway:IEEE Press, 2013:179-186.
[23] 刘炳琪,胡剑波,刘畅,等.飞机差动刹车纠偏过程的STAMP/STPA安全性分析[J].哈尔滨工业大学学报, 2020, 52(4):66-73. LIU B Q, HU J B, LIU C, et al. STAMP/STPA safety analysis of aircraft differential braking correction process[J]. Journal of Harbin Institute of Technology, 2020, 52(4):66-73(in Chinese).
[24] 谷志鸣,高文明,魏潇龙,等.基于TOPAZ的无人机冲突解脱安全评估技术[J].安全与环境学报, 2016, 16(5):51-56. GU Z M, GAO W M, WEI X L, et al. Safety assessment technology of UAV conflict resolution based on the TOPAZ method[J]. Journal of Safety and Environment, 2016, 16(5):51-56(in Chinese).
[25] 吴立尧,韩维,张勇,等.有人/无人机编队指挥控制系统结构设计[J].系统工程与电子技术, 2020, 42(8):1826-1834. WU L Y, HAN W, ZHANG Y, et al. Structure design of command and control system for manned/unmanned aerial vehicles formation[J]. Systems Engineering and Electronics, 2020, 42(8):1826-1834(in Chinese).
[26] 全权.多旋翼飞行器设计与控制[M].北京:电子工业出版社, 2018:107-125. QUAN Q. Design and control of multi-rotor aircraft[M]. Beijing:Electronics Industry Press, 2018:107-125(in Chinese).
[27] SARIM M, RADMANESH M, DECHERING M, et al. Distributed detect-and-avoid for multiple unmanned aerial vehicles in national air space[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(7):071014.
[28] 张宏宏,甘旭升,李双峰,等.复杂低空环境下考虑区域风险评估的无人机航路规划[J].仪器仪表学报,2021,42(01):257-266. ZHANG H H, GAN X S, LI S F, et al. UAV route planning considering regional risk assessment under complex low altitude environment[J]. Chinese Journal of Scientific Instrument, 2021,42(01):257-266(in Chinese).
[29] DURAND N. Constant speed optimal reciprocal collision avoidance[J]. Transportation Research Part C:Emerging Technologies, 2018, 96:366-379.
[30] BAREISS D, VAN DEN BERG J. Generalized reciprocal collision avoidance[J]. The International Journal of Robotics Research, 2015, 34(12):1501-1514.
[31] LI Y M, DU W B, YANG P, et al. A satisficing conflict resolution approach for multiple UAVs[J]. IEEE Internet of Things Journal, 2019, 6(2):1866-1878.
[32] PAPPAS G J, TOMLIN C, SASTRY S S. Conflict resolution for multi-agent hybrid systems[J]. Proceedings of 35th IEEE Conference on Decision and Control, 1996, 2:1184-1189.
[33] LIU H X, LIU F, ZHANG X J, et al. Aircraft conflict resolution method based on hybrid ant colony optimization and artificial potential field[J]. Science China Information Sciences, 2018, 61(12):1-3.
[34] SALEHI V, VEITCH B, SMITH D. Modeling complex socio-technical systems using the FRAM:a literature review[J]. Human Factors and Ergonomics in Manufacturing&Service Industries, 2021, 31(1):118-142.
[35] 李耀华,巩子瑜.基于改进FRAM的民机系统安全性分析[J].航空学报, 2020, 41(12):324083. LI Y H, GONG Z Y. Safety analysis of civil aircraft system based on improved FRAM[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):324083(in Chinese).
[36] CHOI J Y, BYEON S H. HAZOP methodology based on the health, safety, and environment engineering[J]. International Journal of Environmental Research and Public Health, 2020, 17(9):3236.
[37] WIE,CKOL-RYK A, KRZEMIEN'A, ZAWARTKA P, et al. Risk assessment of sewage sludge granulation process using HAZOP study[J]. Process Safety Progress, 2020, 39(1):e12089.
文章导航

/