国家数值风洞(NNW)进展及应用专栏

国家数值风洞(NNW)工程中的CFD基础科学问题研究进展

  • 袁先旭 ,
  • 陈坚强 ,
  • 杜雁霞 ,
  • 郭启龙 ,
  • 肖光明 ,
  • 傅亚陆 ,
  • 梁飞 ,
  • 涂国华
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2021-03-30

  修回日期: 2021-04-28

  网络出版日期: 2021-06-08

基金资助

国家数值风洞工程

Research progress on fundamental CFD issues in National Numerical Windtunnel Project

  • YUAN Xianxu ,
  • CHEN Jianqiang ,
  • DU Yanxia ,
  • GUO Qilong ,
  • XIAO Guangming ,
  • FU Yalu ,
  • LIANG Fei ,
  • TU Guohua
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-03-30

  Revised date: 2021-04-28

  Online published: 2021-06-08

Supported by

National Numerical Windtunnel Project

摘要

计算流体力学(CFD)基础理论方面的持续创新对数值模拟软件的功能拓展及推广应用具有十分重要的意义,国家数值风洞(NNW)工程在CFD相关的若干关键基础科学问题上开展了研究。简要综述了国内各参研团队近3年的研究进展,NNW工程在转捩与湍流模型及计算方法、多相多介质计算模型与方法、多物理场耦合计算模型与方法、高精度数值计算方法等方面形成了一系列阶段性的研究成果,建立了多种原创算法与模型。这些算法与模型中具有较高成熟度的将被集成至NNW工程的相关软件,并面向全国发布。

本文引用格式

袁先旭 , 陈坚强 , 杜雁霞 , 郭启龙 , 肖光明 , 傅亚陆 , 梁飞 , 涂国华 . 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展[J]. 航空学报, 2021 , 42(9) : 625733 -625733 . DOI: 10.7527/S1000-6893.2021.25733

Abstract

Continuous innovations in the fundamental theories of Computational Fluid Dynamics (CFD) are of great importance for capability expansion and popularization of the numerical simulation software. In the National Numerical Windtunnel (NNW) Project, several key fundamental issues in CFD are studied. Through endeavors of the research teams during the past three years, the project has accomplished a series of meaningful achievements, and developed many original methods and models for transition and turbulence computation, multiphase and multi-medium flow computation, multi-physics field computation, and high-accuracy computation. This paper provides brief reviews on related research progress. The methods and models with high-maturity will be integrated into the software in the NNW Project and released to the whole country.

参考文献

[1] SLOTNOCK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[2] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese).
[3] 陈坚强, 马燕凯, 闵耀兵, 等. 国家数值风洞(NNW)通用软件同构混合求解器设计[J]. 空气动力学学报, 2020, 38(6):1103-1110, 1102. CHEN J Q, MA Y K, MIN Y B, et al. Design and development of homogeneous hybrid solvers on National Numerical Windtunnel(NNW)PHengLEI[J]. Acta Aerodynamica Sinica, 2020, 38(6):1103-1110, 1102(in Chinese).
[4] 何磊, 郭勇颜, 曾志春, 等. 国家数值风洞(NNW)软件自动化集成与测试平台设计与研发[J]. 空气动力学学报, 2020, 38(6):1158-1164. HE L, GUO Y Y, ZENG Z C, et al. Design and development of software automated continuous integration and testing platform for National Numerical Windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6):1158-1164(in Chinese).
[5] 赵炜, 陈江涛, 肖维, 等. 国家数值风洞(NNW)验证与确认系统关键技术研究进展[J]. 空气动力学学报, 2020, 38(6):1165-1172. ZHAO W, CHEN J T, XIAO W, et al. Advances in the key technologies of verification and validation system of National Numerical Windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6):1165-1172(in Chinese).
[6] 白汉利, 陈晓梦, 蒲巧. 国家数值风洞(NNW)集成框架系统研发[J]. 空气动力学学报, 2020, 38(6):1149-1157. BAI H L, CHEN X M, PU Q. Development of integration framework system of National Numerical Windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6):1149-1157(in Chinese).
[7] 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5):829-857. YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5):829-857(in Chinese).
[8] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型研究进展[J]. 空气动力学学报, 2018, 36(2):254-264, 180. XIANG X H, ZHANG Y F, CHEN J Q, et al. Progress in transition models for cross-flow instabilities[J]. Acta Aerodynamica Sinica, 2018, 36(2):254-264, 180(in Chinese).
[9] ZHANG Y F, ZHANG Y R, CHEN J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver chant 2.0[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston:AIAA, 2017.
[10] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型参数不确定度量化分析与应用研究[J]. 宇航学报, 2020, 41(9):1141-1150. XIANG X H, ZHANG Y F, CHEN J Q, et al. Uncertainty quantification analysis and application research on cross-flow transition model parameters[J]. Journal of Astronautics, 2020, 41(9):1141-1150(in Chinese).
[11] XIANG X H, REN H J, ZHANG Y F, et al. Transition prediction with hypersonic cross-flow model on {HIFiRE}-5[J]. Journal of Physics:Conference Series, 2021, 1786:012051.
[12] 向星皓, 张毅锋, 陈坚强, 等. 高超声速三维边界层转捩预测模型研究[C]//第十一届全国流体力学学术会议论文集, 2020:132. XIANG X H, ZHANG Y F, CHEN J Q, et al. Transition model investigation on hypersonic three dimensional boundary layer[C]//The 11th National Conference on Fluid Mechanics, 2020:132(in Chinese).
[13] 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J].航空学报, 2021, 42(4):124317. CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of Hypersonic Transition Research Vehicle (HyTRV)[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):124317(in Chinese).
[14] SONG R J, ZHAO L, HUANG Z F. Improvement of the parabolized stability equation to predict the linear evolution of disturbances in three-dimensional boundary layers based on ray tracing theory[J]. Physical Review Fluids, 2020, 5(3):033901.
[15] 毕卫涛, 唐帆, 胡永煌, 等. 基于结构系综理论发展可靠工程转捩模型的一种新思路[J]. 空气动力学学报, 2020, 38(6):1136-1148. BI W T, TANG F, HU Y H, et al. New perspective for developing reliable engineering transition model based on the structural ensemble dynamics theory[J]. Acta Aerodynamica Sinica, 2020, 38(6):1136-1148(in Chinese).
[16] 涂国华, 万兵兵, 陈坚强, 等. MF-1钝锥边界层稳定性及转捩天地相关性研究[J]. 中国科学:物理学力学天文学, 2019, 49(12):118-128. TU G H, WAN B B, CHEN J Q, et al. Investigation on correlation between wind tunnel and flight for boundary layer stability and transition of MF-1 blunt cone[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(12):118-128(in Chinese).
[17] TU G H, YANG Q, CHEN J Q, et al. Preliminary conception and test of global stability decomposition for flow stability analysis[C]//10th International Conference on Computational Fluid Dynamics, 2018.
[18] 陈十一, 王建春, 郑钦敏, 等. 可压缩湍流的多尺度分析[J]. 空气动力学学报, 2021, 39(1):1-17. CHEN S Y, WANG J C, ZHENG Q M, et al. Multi-scale analyses of compressible turbulence[J]. Acta Aerodynamica Sinica, 2021, 39(1):1-17(in Chinese).
[19] YUAN Z L, XIE C Y, WANG J C. Deconvolutional artificial neural network models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11):115106.
[20] XIE C Y, YUAN Z L, WANG J C. Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11):115101.
[21] 吴霆, 时北极, 王士召, 等. 大涡模拟的壁模型及其应用[J]. 力学学报, 2018, 50(3):453-466. WU T, SHI B J, WANG S Z, et al. Wall-model for large-eddy simulation and its applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3):453-466(in Chinese).
[22] 陈浩, 袁先旭, 毕林, 等. 基于RANS/LES混合方法的分离流动模拟[J]. 航空学报, 2020, 41(8):123642. CHEN H, YUAN X X, BI L, et al. Simulation of separated flow based on RANS/LES hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):123642(in Chinese).
[23] ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31(1):015105.
[24] ZHU L Y, ZHANG W W, SUN X X, et al. Turbulence closure for high Reynolds number airfoil flows by deep neural networks[J]. Aerospace Science and Technology, 2021, 110:106452.
[25] ZHU G W, HUANG S H. High-order large-eddy simulation of the transport of turbulent wind field:accuracy and efficiency[C]//The 15th International Conference on Wind Engineering, 2019.
[26] ZHU G W, HUANG S H, LI Q S. Large-eddy simulation of the inflow turbulence transport and aerodynamics of a rectangular 5:1 cylinder with high-order numerical methods[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 207:104366.
[27] 林宗虎. 能源动力中多相流热物理基础理论与技术研究[M]. 北京:中国电力出版社, 2010. LIN Z H. Research on the fundamental theory and technology of multiphase flow thermo-physics in energy dynamics[M]. Beijing:China Electric Power Press, 2010(in Chinese).
[28] SHI W K, SHEN Y M, CHEN J Q, et al. SPH simulations on water entry characteristics of a re-entry capsule[J]. Engineering Analysis with Boundary Elements, 2020, 119:257-268.
[29] 沈雁鸣, 施文奎, 陈坚强, 等. 变光滑长度SPH方法在入水冲击中的应用研究[J]. 船舶力学, 2020, 24(3):323-331. SHEN Y M, SHI W K, CHEN J Q, et al. Application of SPH method with space-based variable smoothing length to water entry simulation[J]. Journal of Ship Mechanics, 2020, 24(3):323-331(in Chinese).
[30] MENG Z F, WANG P P, ZHANG A M, et al. A multiphase SPH model based on Roe's approximate Riemann solver for hydraulic flows with complex interface[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365:112999.
[31] LI M K, ZHANG A M, MING F R, et al. An axisymmetric multiphase SPH model for the simulation of rising bubble[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366:113039.
[32] ZHANG Z L, KHALID M S U, LONG T, et al. Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method[J]. Journal of Fluids and Structures, 2020, 94:102942.
[33] LONG T, YANG P Y, LIU M B. A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems[J]. International Journal of Mechanical Sciences, 2020, 174:105558.
[34] 杜雁霞, 李明, 桂业伟, 等. 飞机结冰热力学行为研究综述[J]. 航空学报, 2017, 38(2):520717. DU Y X, LI M, GUI Y W, et al. Review of thermodynamic behaviors in aircraft icing process[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520717(in Chinese).
[35] 李伟斌, 宋超, 易贤, 等. 动态结冰孔隙结构三维建模方法[J]. 化工学报, 2020, 71(3):1009-1017. LI W B, SONG C, YI X, et al. 3-D modeling method of porous structure for dynamic icing[J]. CIESC Journal, 2020, 71(3):1009-1017(in Chinese).
[36] ZHANG H X, ZHANG X W, YI X, et al. Asymmetric splash and breakup of drops impacting on cylindrical superhydrophobic surfaces[J]. Physics of Fluids, 2020, 32(12):122108.
[37] 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学:物理学力学天文学, 2019, 49(11):139-153. GUI Y W. Combined thermal phenomena of hypersonic vehicle[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11):139-153(in Chinese).
[38] 杨肖峰, 李成祥, 李芹, 等. 高焓气流下表面跨尺度催化传热过程的CFD/RMD耦合计算方法探究[C]//2020年工程热物理年会, 2020. YANG X F, LI C X, LI Q, et al. Study in CFD/RMD coupling calculation method for cross-scale catalytic heat transfer progress under high enthalpy airflow[C]//2020 Annual Meeting of Engineering Thermophysics, 2020(in Chinese).
[39] 俞逸斯, 李明佳, 李冬, 等. C/SiC复合材料碳纤维氧化烧蚀机理研究[C]//2020年工程热物理年会, 2020. YU Y S, LI M J, LI D, et al. Study on oxidation and ablation and mechanism of carbon fiber in C/SiC composites[C]//2020 Annual Meeting of Engineering Thermophysics, 2020(in Chinese).
[40] 张超, 肖光明, 王娴, 等. A320座舱内流动传热特性的数值研究[C]//2020年全国环境风工程学术会议,2020. ZHANG C, XIAO G M, WANG X, et al. Numerical simulation of heat transfer characteristics of flow in cockpit of A320[C]//2020 National Environmental Wind Engineering Academic Conference, 2020(in Chinese).
[41] CHEN M J, LI Q, ZHANG P. Numerical prediction of high temperature thermal contact resistance of HTA-C/ZrB2-SiC with radiation effects[J]. International Communications in Heat and Mass Transfer, 2021, 120:105058.
[42] 赵建宁, 刘冬欢, 魏东, 等. 考虑界面接触热阻的一维复合结构的热整流机理[J]. 物理学报, 2020, 69(5):056501. ZHAO J N, LIU D H, WEI D, et al. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance[J]. Acta Physica Sinica, 2020, 69(5):056501(in Chinese).
[43] ZHAO J N, WEI D, GAO A Q, et al. Thermal rectification enhancement of bi-segment thermal rectifier based on stress induced interface thermal contact resistance[J]. Applied Thermal Engineering, 2020, 176:115410.
[44] 桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4):641-650. GUI Y W, LIU L, WEI D. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2020, 38(4):641-650(in Chinese).
[45] 王梓伊, 张伟伟, 刘磊. 高超声速飞行器热气动弹性仿真计算方法综述[J]. 气体物理, 2020, 5(6):1-15. WANG Z Y, ZHANG W W, LIU L. Review of simulation methods of hypersonic aerothermoelastic problems[J]. Physics of Gases, 2020, 5(6):1-15(in Chinese).
[46] 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报, 2021(in press). LIU P X, YUAN X X, SUN D, et al. DNS of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2021(in press) (in Chinese).
[47] 吴正园, 莫凡, 高振勋, 等. 湍流边界层与高温气体效应耦合的直接数值模拟[J]. 空气动力学学报, 2020, 38(6):1111-1119, 1128. WU Z Y, MO F, GAO Z X, et al. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. Acta Aerodynamica Sinica, 2020, 38(6):1111-1119, 1128(in Chinese).
[48] 李佳伟, 王江峰, 杨天鹏, 等. "Ⅳ型"激波干扰中流-热-固耦合问题一体化计算分析[J]. 航空学报, 2019, 40(12):123190. LI J W, WANG J F, YANG T P, et al. Integrated numerical analysis of fluid-thermal-structural problems in "Type Ⅳ" shock wave interference[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):123190(in Chinese).
[49] CUI Z L, ZHAO J, HE L C, et al. A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets[J]. Physics of Fluids, 2020, 32(11):112110.
[50] 丁明松, 刘庆宗, 江涛, 等. 高温气体效应对高超声速磁流体控制的影响[J]. 航空学报, 2020, 41(2):123278. DING M S, LIU Q Z, JIANG T, et al. Impact of high temperature gas effect on hypersonic magnetohydrodynamic control[J]. Acta Aeronautica Astronautica Sinica, 2020, 41(2):123278(in Chinese).
[51] 丁明松, 傅杨奥骁, 高铁锁, 等. 高超声速磁流体力学控制霍尔效应影响[J]. 物理学报, 2020, 69(21):214703. DING M S, FU Y A X, GAO T S, et al. Influence of Hall effect on hypersonic magnetohydrodynamic control[J]. Acta Physica Sinica, 2020, 69(21):214703(in Chinese).
[52] ZHANG R, ZHONG C W, LIU S, et al. Large-eddy simulation of wall-bounded tur-bulent flow with high-order discrete unified gas-kinetic scheme[J]. Advances in Aerodynamics, 2020, 2:1-26.
[53] YUAN R F, ZHONG C W. A conservative implicit scheme for steady state solutions of diatomic gas flow in all flow regimes[J]. Computer Physics Communications, 2020, 247:106972.
[54] YUAN R F, LIU S, ZHONG C W. A multi-prediction implicit scheme for steady state solutions of gas flow in all flow regimes[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 92:105470.
[55] ZHU Y J, LIU C, ZHONG C W, et al. Unified gas-kinetic wave-particle methods II:multiscale simulation on unstructured mesh[DB/OL]. arXiv preprint:1903.11861, 2019.
[56] FEI F, ZHANG J, LI J, et al. A unified stochastic particle Bhatnagar-Gross-Krook method for multiscale gas flows[J]. Journal of Computational Physics, 2020, 400:108972.
[57] 费飞, 张俊, 柳朝晖. 基于动理学模型的多尺度随机粒子方法[J]. 空气动力学学报, 2019, 37(5):731-739. FEI F, ZHANG J, LIU Z H. Multi-scale stochastic particle method based on kinetic models[J]. Acta Aerodynamica Sinica, 2019, 37(5):731-739(in Chinese).
[58] YUAN Z Y, ZHAO W W, JIANG Z Z, et al. Modified nonlinear coupled constitutive relations model for hypersonic nonequilibrium flows[J]. Journal of Thermophysics and Heat Transfer, 2020, 34(4):848-859.
[59] 李廷伟,张莽,赵文文, 等. 面向稀薄流非线性本构预测的机器学习方法研究[J]. 航空学报, 2021,42(4):524386. LI T W, ZHANG M, ZHAO W W, et al. Study of machine learning method in the correction of rarefied nonlinear constitutive relations[J].Acta Aeronautica et Astronautica Sinica,2021,42(4):524386(in Chinese).
[60] FANG M, LI Z H, LI Z H, et al. DSMC modeling of rarefied ionization reactions and applications to hypervelocity spacecraft reentry flows[J]. Advances in Aerodynamics, 2020, 2:7.
[61] GUO Q L, SUN D, LI C, et al. A new discontinuity indicator for hybrid WENO schemes[J]. Journal of Scientific Computing, 2020, 83(2):1-33.
[62] 郭启龙, 涂国华, 陈坚强, 等. 横向矩形微槽对高超边界层失稳的控制作用[J]. 航空动力学报, 2020, 35(1):135-143. GUO Q L, TU G H, CHEN J Q, et al. Control of hypersonic boundary layer instability by transverse rectangular micro-cavities[J]. Journal of Aerospace Power, 2020, 35(1):135-143(in Chinese).
[63] SUN D, GUO Q L, LI C, et al. Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction[J]. Physics of Fluids, 2019, 31(12):126101.
[64] LI C, SUN D, GUO Q L, et al. A new hybrid WENO scheme on a four-point stencil for Euler equations[J]. Journal of Scientific Computing, 2021, 87(1):1-37.
[65] LI C, GUO Q L, SUN D, et al. Improved third-order weighted essentially nonoscillatory schemes with new smoothness indicators[J]. International Journal for Numerical Methods in Fluids, 2021, 93(1):1-23.
[66] LI C, CHEN J Q, YUAN X X, et al. Improved weighted NND scheme for shock-capturing[J]. Journal of Physics:Conference Series, 2021, 1786:012043.
[67] WU C H, WU L, ZHANG S H. A smoothness indicator constant for sine functions[J]. Journal of Computational Physics, 2020, 419:109661.
[68] WU C H, WU L, LI H, et al. Very high order WENO schemes using efficient smoothness indicators[J]. Journal of Computational Physics, 2021, 432:110158.
[69] LI H, LUO Y, ZHANG S H. Assessment of upwind/symmetric WENO schemes for direct numerical simulation of screech tone in supersonic jet[J]. Journal of Scientific Computing, 2021, 87(1):1-39.
[70] GUO J, ZHU H J, YAN Z G, et al. High-order hybrid WCNS-CPR scheme for shock capturing of conservation laws[J]. International Journal of Aerospace Engineering, 2020, 2020:1-13.
[71] SHAO S. An efficient DDG/FV hybrid method for 3D viscous flow simulations on tetrahedral grids[J]. Communications in Computational Physics, 2020, 27(3):725-752.
[72] 龚小权, 贾洪印, 陈江涛, 等. 基于雅可比矩阵精确计算的GMRES隐式方法在间断Galerkin有限元中的应用[J]. 空气动力学学报, 2019, 37(1):121-132. GONG X Q, JIA H Y, CHEN J T, et al. Applications of GMRES based on exact calculations of Jacobian matrix in discontinuous Galerkin methods[J]. Acta Aerodynamica Sinica, 2019, 37(1):121-132(in Chinese).
[73] YAN Z G, PAN Y, CASTIGLIONI G, et al. Nektar++:Design and implementation of an implicit, spectral/hp element, compressible flow solver using a Jacobian-free Newton Krylov approach[J]. Computers & Mathematics With Applications, 2021, 81:351-372.
[74] WANG Q J, DEITERDING R, PAN J H, et al. Consistent high resolution interface-capturing finite volume method for compressible multi-material flows[J]. Computers & Fluids, 2020, 202:104518.
[75] ZHANG Y S, REN Y X, WANG Q. Compact high order finite volume method on unstructured grids IV:Explicit multi-step reconstruction schemes on compact stencil[J]. Journal of Computational Physics, 2019, 396:161-192.
[76] FENG Y W, LIU T G, WANG K. A characteristic-featured shock wave indicator for conservation laws based on training an artificial neuron[J]. Journal of Scientific Computing, 2020, 83(1):1-34.
[77] WANG J F. Solution remapping technique to accelerate flow convergence for finite volume methods applied to shape optimization design[J]. Numerical Mathematics:Theory, Methods and Applications, 2020, 13(4):863-880.
[78] ZHANG F, CHENG J, LIU T G. Exponential boundary-layer approximation space for solving the compressible laminar Navier-Stokes equations[J]. Advances in Computational Mathematics, 2020, 46(2):1-36.
[79] ZHANG F, CHENG J, LIU T G. A reconstructed discontinuous Galerkin method for incompressible flows on arbitrary grids[J]. Journal of Computational Physics, 2020, 418:109580.
[80] ZHANG F, CHENG J, LIU T G. An asymptotic expansion for 1D steady compressible Navier-Stokes equations under nonuniform enthalpy[J]. Mathematical Methods in the Applied Sciences, 2020, 43(9):5788-5808.
文章导航

/