流体力学与飞行力学

高超声速边界层转捩模型横流效应修正与应用

  • 朱志斌 ,
  • 尚庆 ,
  • 沈清
展开
  • 中国航天空气动力技术研究院, 北京 100074

收稿日期: 2021-04-19

  修回日期: 2022-07-25

  网络出版日期: 2021-06-08

Crossflow modification of transition model for hypersonic boundary layer and its application

  • ZHU Zhibin ,
  • SHANG Qing ,
  • SHEN Qing
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2021-04-19

  Revised date: 2022-07-25

  Online published: 2021-06-08

摘要

三维边界层在高超声速飞行器中普遍存在,转捩过程受到横流不稳定性的显著影响而出现复杂的转捩形态特征。为了提高转捩模型对高超声速三维边界层转捩现象的预测能力,在与SST湍流模型耦合求解的γ-Reθt转捩模型基础上,提出了一种基于当地流场变量的横流效应修正方法。以椭圆锥外形为研究对象,开展了转捩模型横流效应修正方法的分析、验证及应用。数值模拟结果表明,椭圆锥外形高超声速边界层流动存在显著的横流特征,在模型中部产生横流转捩现象。构造的横流雷诺数判据能够有效表征三维边界层流动的横流效应,提出的转捩模型横流效应修正方法提高了横流转捩的预测能力,通过标定修正模型参数获得了与风洞试验数据和精细模拟接近的转捩形态特征。风洞试验及飞行试验数据验证表明,提出的转捩模型横流效应修正方法对高超声速三维边界层转捩预测具有较好的应用效果。

本文引用格式

朱志斌 , 尚庆 , 沈清 . 高超声速边界层转捩模型横流效应修正与应用[J]. 航空学报, 2022 , 43(7) : 125685 -125685 . DOI: 10.7527/S1000-6893.2021.25685

Abstract

The three-dimensional boundary layer is ubiquitous in hypersonic vehicles, and transition process is significantly affected by the crossflow instability, resulting in complex transition patterns. To improve the prediction ability of the transition model for hypersonic three-dimensional boundary layer, on the basis of γ-Reθt transition model coupled with the SST turbulence model, a crossflow effect modification method based on local flow variables is proposed. The analysis, verification and application of the crossflow modification method are carried out on the elliptical cone. The numerical simulation results show significant crossflow features in the hypersonic boundary layer on the elliptical cone, and crossflow transition occurs in the middle of the model. It is demonstrated that, the crossflow Reynolds number criterion can effectively characterize the crossflow effect of the three-dimensional boundary layer, and the proposed crossflow modification method improves the prediction ability for crossflow transition. The transition patterns close to those of the wind tunnel experimental data and high-fidelity simulation are obtained by calibration of the crossflow modification parameters. The verification of wind tunnel test and flight test data indicates that, the proposed transition model crossflow modification method achieves good application effect on the transition prediction of hypersonic three-dimensional boundary layer.

参考文献

[1] 杨武兵,沈清,朱德华,等.高超声速边界层转捩研究现状与趋势[J].空气动力学学报,2018,36(2):183-195. YANG W B, SHEN Q, ZHU D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2):183-195(in Chinese).
[2] KIMMEL R L, KLEIN M A, SCHWOERKE S N. Three-dimensional hypersonic laminar boundary-layer computations for transition experiment design[J]. Journal of Spacecraft and Rockets, 1997, 34(4):409-415.
[3] KIMMEL R L, POGGIE J, SCHWOERKE S N. Laminar-turbulent transition in a Mach 8 elliptic cone flow[J]. AIAA Journal, 1999, 37(9):1080-1087.
[4] POGGIE J, KIMMEL R L, SCHWOERKE S N. Traveling instability waves in a Mach 8 flow over an elliptic cone[J]. AIAA Journal, 2000, 38(2):251-258.
[5] HOLDEN M, WADHAMS T, MACLEAN M, et al. Reviews of studies of boundary layer transition in hypersonic flows over axisymmetric and elliptic cones conducted in the CUBRC shock tunnels[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[6] JULIANO T, SCHNEIDER S. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[C]//40th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2010.
[7] JULIANO T J, BORG M P, SCHNEIDER S P. Quiet tunnel measurements of HIFiRE-5 boundary-layer transition[J]. AIAA Journal, 2015, 53(4):832-846.
[8] BORG M, KIMMEL R, STANFIELD S. Crossflow instability for HIFiRE-5 in a quiet hypersonic wind tunnel[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2012.
[9] BORG M P, KIMMEL R L, HOFFERTH J W, et al. Freestream effects on boundary layer disturbances for HIFiRE-5[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[10] CHOUDHARI M, CHANG C L, JENTINK T, et al. Transition analysis for the HIFiRE-5 vehicle[C]//39th AIAA Fluid Dynamics Conference. Reston:AIAA, 2009.
[11] GOSSE R, KIMMEL R, JOHNSON H. CFD study of the HIFiRE-5 flight experiment[C]//40th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2010.
[12] LI F, CHOUDHARI M, CHANG C L, et al. Stability analysis for HIFiRE experiments[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2012.
[13] JULIANO T J, POGGIE J, PORTER K, et al. HIFiRE-5b heat flux and boundary-layer transition[C]//47th AIAA Fluid Dynamics Conference. Reston:AIAA, 2017.
[14] KIMMEL R L, ADAMCZAK D W, HARTLEY D, et al. Hypersonic international flight research experimentation-5b flight overview[J]. Journal of Spacecraft and Rockets, 2018, 55(6):1303-1314.
[15] TUFTS M W, BORG M P, GOSSE R C, et al. Collaboration between flight test, ground test, and computation on HIFiRE-5[C]//2018 Applied Aerodynamics Conference. Reston:AIAA, 2018.
[16] DINZL D J, CANDLER G V. Direct numerical simulation of crossflow instability excited by microscale roughness on HIFiRE-5[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[17] TUFTS M W, BORG M P, BISEK N J, et al. High-fidelity simulation of HIFiRE-5 boundary-layer transition[C]//AIAA Aviation 2020 Forum. Reston:AIAA, 2020.
[18] LANGTRY R, MENTER F. Transition modeling for general CFD applications in aeronautics[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[19] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[20] WANG L, FU S. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2009, 52(5):768-774.
[21] WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1):165-187.
[22] CHO J R, CHUNG M K. A k-ε-γ equation turbulence model[J]. Journal of Fluid Mechanics, 1992, 237:301-322.
[23] KOHAMA Y, DAVIS S S. A new parameter for predicting crossflow instability[J]. JSME International Journal Series B, 1993, 36(1):80-85.
[24] REED H L, HAYNES T S. Transition correlation in three-dimensional boundary layers[J]. AIAA Jornal, 1994, 32(5):923-929.
[25] MULLER C, HERBST F. Modeling of crossflow-induced transition based on local variables[C]//6th European Conference on Computational Fluid Dynamic, 2014.
[26] GRABE C, KRUMBEIN A. Extension of the γ-Reθtmodel for prediction of crossflow transition[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014.
[27] MEDIDA S, BAEDER J. A new crossflow transition onset criterion for RANS turbulence models[C]//21st AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2013.
[28] LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects:AIAA-2015-2474[R]. Reston:AIAA, 2015.
[29] 周玲,阎超,郝子辉,等.转捩模式与转捩准则预测高超声速边界层流动[J].航空学报, 2016, 37(4):1092-1102. ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1092-1102(in Chinese).
[30] ZHANG Y F, ZHANG Y R, CHEN J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver chant 2.0[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston:AIAA, 2017.
[31] KRAUSE M, BEHR M, BALLMANN J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008.
[32] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[33] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[34] ZHANG H X, ZHUANG F G. NND schemes and their applications to numerical simulation of two-and three-dimensional flows[J]. Advances in Applied Mechanics, 1991, 29:193-256.
[35] YOON S, JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9):1025-1026.
[36] 尚庆,陈林,李雪,等.高超声速钝双楔绕流流动转捩与分离流动的壁温影响[J].航空学报, 2014, 35(11):2958-2969. SHANG Q, CHEN L, LI X, et al. Wall temperature effect on transition flow and separated flow in hypersonic flow around a blunt double wedge[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2958-2969(in Chinese).
[37] 朱志斌,尚庆,潘宏禄,等.高超声速双椭球气动热环境预测[J].兵器装备工程学报, 2019, 40(1):111-117. ZHU Z B, SHANG Q, PAN H L, et al. Prediction of aero-heating environment of the hypersonic double ellipsoid flow[J]. Journal of Ordnance Equipment Engineering, 2019, 40(1):111-117(in Chinese).
文章导航

/