[1] VIETS H. Flip-flop jet nozzle[J]. AIAA Journal, 1975, 13(10): 1375-1379.
[2] GREGORY J W, SULLIVAN J P, RAMAN G, et al. Characterization of the microfluidic oscillator[J]. AIAA Journal, 2007, 45(3): 568-576.
[3] SEELE R, TEWES P, WOSZIDLO R, et al. Discrete sweeping jets as tools for improving the performance of the V-22[J]. Journal of Aircraft, 2009, 46(6): 2098-2106.
[4] 刘影, 李春鹏, 张铁军, 等. 后缘连续偏转机翼振荡射流控制的数值模拟研究[J]. 航空科学技术, 2020, 31(5): 36-43. LIU Y, LI C P, ZHANG T J, et al. Numerical simulation of oscillating jet control for trailing edge continuous deflection wing[J]. Aeronautical Science & Technology, 2020, 31(5): 36-43 (in Chinese).
[5] 程永卓, 李宇红, 霍福鹏, 等. 振荡射流控制翼型流动分离的数值模拟[J]. 清华大学学报(自然科学版), 2002, 42(12): 1644-1646, 1666. CHENG Y Z, LI Y H, HUO F P, et al. Numerical simulation of oscillating excitation separation flow control over airfoils[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(12): 1644-1646, 1666 (in Chinese).
[6] RAMAN G, RAGHU S. Cavity resonance suppression using miniature fluidic oscillators[J]. AIAA Journal, 2004, 42(12): 2608-2612.
[7] GUYOT D, BOBUSCH B, PASCHEREIT C O, et al. Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation[J]. International Journal of Flow Control, 2009, 1(2): 155-166.
[8] 吴双应, 曾丹苓, 李友荣. 自激振荡脉冲射流强化传热实验及其性能评价[J]. 石油化工设备, 2005, 34(6): 1-5. WU S Y, ZENG D L, LI Y R. Performance evaluation and experiment for self-oscillation pulsating flow in forced convection heat transfer[J]. Petro-Chemical Equipment, 2005, 34(6): 1-5 (in Chinese).
[9] TOMAC M N, GREGORY J W. Internal jet interactions in a fluidic oscillator at low flow rate[J]. Experiments in Fluids, 2014, 55(5): 1730.
[10] ARWATZ G, FONO I, SEIFERT A. Suction and oscillatory blowing actuator modeling and validation[J]. AIAA Journal, 2008, 46(5): 1107-1117.
[11] BOBUSCH B C, WOSZIDLO R, BERGADA J M, et al. Experimental study of the internal flow structures inside a fluidic oscillator[J]. Experiments in Fluids, 2013, 54(6): 1559.
[12] WOSZIDLO R, WYGNANSKI I. Parameters governing separation control with sweeping jet actuators: AIAA-2011-3172[R]. Reston: AIAA, 2011.
[13] BAUER M, LOHSE J, HAUCKE F, et al. High-lift performance investigation of a two-element configuration with a two-stage actuator system[J]. AIAA Journal, 2014, 52(6): 1307-1313.
[14] PACK MELTON L G, KOKLU M. Active flow control using sweeping jet actuators on a semi-span wing model: AIAA-2016-1817[R]. Reston: AIAA, 2016.
[15] KARA K, SLUPSKI B J. Separated flow control over NACA 0012 airfoil using sweeping jet actuators: AIAA-2017-3043[R]. Reston: AIAA, 2017.
[16] LUCAS N, TAUBERT L, WOSZIDLO R, et al. Discrete sweeping jets as tools for separation control: AIAA-2008-3868[R]. Reston: AIAA, 2008.
[17] TEWES P, TAUBERT L, WYGNANSKI I. On the use of sweeping jets to augment the lift of a λ-wing: AIAA-2010-4689[R]. Reston: AIAA, 2010.
[18] JONES G S, MILHOLEN W E, CHAN D T, et al. A sweeping jet application on a high Reynolds number semi-span supercritical wing configuration: AIAA-2017-3044[R]. Reston: AIAA, 2017.
[19] 朱自强, 王凯, 黄波恩. 增强立尾效益的主动流动控制[J]. 航空学报, 2018, 39(5): 121684. ZHU Z Q, WANG K, HUANG B E. Active flow control for enhancing vertical tail efficiency[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121684 (in Chinese).
[20] SCHLOESSER P, MEYER M, SCHUELLER M, et al. Fluidic actuators for separation control at the engine/wing junction[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(5): 709-718.
[21] WILSON J, SCHATZMAN D, ARAD E, et al. Suction and pulsed-blowing flow control applied to an axisymmetric body[J]. AIAA Journal, 2013, 51(10): 2432-2446.
[22] KIM J, MOIN P, SEIFERT A. Large-eddy simulation-based characterization of suction and oscillatory blowing fluidic actuator[J]. AIAA Journal, 2017, 55(8): 2566-2579.
[23] DOLGOPYAT D, SEIFERT A. Active flow control virtual maneuvering system applied to conventional airfoil[J]. AIAA Journal, 2018, 57(1): 72-89.
[24] KOKLU M, OWENS L R. Comparison of sweeping jet actuators with different flow-control techniques for flow-separation control[J]. AIAA Journal, 2017, 55(3): 848-860.
[25] KOKLU M. Effect of a Coanda extension on the performance of a sweeping-jet actuator[J]. AIAA Journal, 2016, 54(3): 1125-1128.
[26] WOSZIDLO R, OSTERMANN F, NAYERI C N, et al. The time-resolved natural flow field of a fluidic oscillator[J]. Experiments in Fluids, 2015, 56(6): 125.
[27] BOBUSCH B C, WOSZIDLO R, KRÜGER O, et al. Numerical investigations on geometric parameters affecting the oscillation properties of a fluidic oscillator: AIAA-2013-2709[R]. Reston: AIAA, 2013.
[28] SEO J H, ZHU C, MITTAL R. Flow physics and frequency scaling of sweeping jet fluidic oscillators[J]. AIAA Journal, 2018, 56(6): 2208-2219.
[29] TIPPETTS J R, NG H K, ROYLE J K. Oscillating bistable fluid amplifier for use as a flowmeter[J]. Fluidics Quarterly, 1973, 5(1): 28-42.
[30] GOKOGLU S, KUCZMARSKI M, CULLEY D, et al. Numerical studies of a fluidic diverter for flow control: AIAA-2009-4012[R]. Reston: AIAA, 2009.
[31] GOKOGLU S, KUCZMARSKI M, CULLEY D, et al. Numerical studies of a supersonic fluidic diverter actuator for flow control: AIAA-2010-4415[R]. Reston: AIAA, 2010.
[32] WOSZIDLO R, OSTERMANN F, NAYERI C N, et al. The time-resolved natural flow field of a fluidic oscillator[J]. Experiments in Fluids, 2015, 56(6): 125.