流体力学与飞行力学

吸气-振荡射流激励器振荡特性

  • 孙启翔 ,
  • 王万波 ,
  • 黄勇
展开
  • 中国空气动力研究与发展中心 低速空气动力研究所, 绵阳 621000

收稿日期: 2021-04-06

  修回日期: 2021-06-09

  网络出版日期: 2021-06-08

基金资助

国家级项目

Oscillation characteristics of suction and oscillatory blowing actuator

  • SUN Qixiang ,
  • WANG Wanbo ,
  • HUANG Yong
Expand
  • Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-04-06

  Revised date: 2021-06-09

  Online published: 2021-06-08

Supported by

National Level Project

摘要

高效的振荡射流系统需要振荡特性优良的激励器,这要求减少激励器内流损失以提高出流流速、减少射流在0°偏角处的停滞时间以利于在流场中产生非定常旋涡、增大射流偏角以增大控制范围、有效调节振荡频率以接近最优控制频率。现以能大幅减少引入高压气源气体流量的吸气-振荡射流激励器为研究对象,通过数值模拟研究了不同几何外形激励器的起振、出流和频率特性。结果表明:只有当扣除射流宽度后的喉道高度大于反馈通道宽度的1.2倍,且反馈段长度足够、扩张角大小合适时,射流才会稳定振荡,并能与扩张段壁面相切;截短扩张段可使出口处射流中心速度提高67.3%;减小扩张段内分离涡的长宽比最大可使射流扫掠角达到±110°;改变反馈通道的宽度和长度会通过改变通道内通流面积和沿程损失以改变流量,从而影响频率。

本文引用格式

孙启翔 , 王万波 , 黄勇 . 吸气-振荡射流激励器振荡特性[J]. 航空学报, 2022 , 43(8) : 125627 -125627 . DOI: 10.7527/S1000-6893.2021.25627

Abstract

Efficient oscillating jet systems need actuators with excellent oscillation characteristics, which requires reduction of the internal flow losses in the actuator to increase the outflow velocity, reduction of the stagnation time of the jet at 0° deflection angle to generate unsteady vortexes in the flow field, increase of the jet deflection angle to enlarge the control area, and the ability to effectively adjust the oscillation frequency to approach the optimal control frequency. This study takes the suction and oscillatory blowing actuator, which can significantly reduce the gas flow of the high-pressure gas source, as the research object. The characteristics of the start-up, discharge and frequency of the actuator with different geometric shapes are examined by numerical simulation. The results show that only when the throat height after deducting the jet width is larger than 1.2 times of the feedback channel width, the length of the feedback section is sufficient and the expansion angle is appropriate, the jet will oscillate stably and be tangent to the wall of the expansion section. The truncated expansion section can increase the velocity of the jet center at the exit by 67.3% maximally, and reducing the aspect ratio of the separated vortex in the expansion section can maximally increase the jet sweep angle up to ± 110°. Changes in the width and length of the feedback channel will alter the flow rate by changing the flow area and the losses along the channel, thus affecting the frequency.

参考文献

[1] VIETS H. Flip-flop jet nozzle[J]. AIAA Journal, 1975, 13(10): 1375-1379.
[2] GREGORY J W, SULLIVAN J P, RAMAN G, et al. Characterization of the microfluidic oscillator[J]. AIAA Journal, 2007, 45(3): 568-576.
[3] SEELE R, TEWES P, WOSZIDLO R, et al. Discrete sweeping jets as tools for improving the performance of the V-22[J]. Journal of Aircraft, 2009, 46(6): 2098-2106.
[4] 刘影, 李春鹏, 张铁军, 等. 后缘连续偏转机翼振荡射流控制的数值模拟研究[J]. 航空科学技术, 2020, 31(5): 36-43. LIU Y, LI C P, ZHANG T J, et al. Numerical simulation of oscillating jet control for trailing edge continuous deflection wing[J]. Aeronautical Science & Technology, 2020, 31(5): 36-43 (in Chinese).
[5] 程永卓, 李宇红, 霍福鹏, 等. 振荡射流控制翼型流动分离的数值模拟[J]. 清华大学学报(自然科学版), 2002, 42(12): 1644-1646, 1666. CHENG Y Z, LI Y H, HUO F P, et al. Numerical simulation of oscillating excitation separation flow control over airfoils[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(12): 1644-1646, 1666 (in Chinese).
[6] RAMAN G, RAGHU S. Cavity resonance suppression using miniature fluidic oscillators[J]. AIAA Journal, 2004, 42(12): 2608-2612.
[7] GUYOT D, BOBUSCH B, PASCHEREIT C O, et al. Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation[J]. International Journal of Flow Control, 2009, 1(2): 155-166.
[8] 吴双应, 曾丹苓, 李友荣. 自激振荡脉冲射流强化传热实验及其性能评价[J]. 石油化工设备, 2005, 34(6): 1-5. WU S Y, ZENG D L, LI Y R. Performance evaluation and experiment for self-oscillation pulsating flow in forced convection heat transfer[J]. Petro-Chemical Equipment, 2005, 34(6): 1-5 (in Chinese).
[9] TOMAC M N, GREGORY J W. Internal jet interactions in a fluidic oscillator at low flow rate[J]. Experiments in Fluids, 2014, 55(5): 1730.
[10] ARWATZ G, FONO I, SEIFERT A. Suction and oscillatory blowing actuator modeling and validation[J]. AIAA Journal, 2008, 46(5): 1107-1117.
[11] BOBUSCH B C, WOSZIDLO R, BERGADA J M, et al. Experimental study of the internal flow structures inside a fluidic oscillator[J]. Experiments in Fluids, 2013, 54(6): 1559.
[12] WOSZIDLO R, WYGNANSKI I. Parameters governing separation control with sweeping jet actuators: AIAA-2011-3172[R]. Reston: AIAA, 2011.
[13] BAUER M, LOHSE J, HAUCKE F, et al. High-lift performance investigation of a two-element configuration with a two-stage actuator system[J]. AIAA Journal, 2014, 52(6): 1307-1313.
[14] PACK MELTON L G, KOKLU M. Active flow control using sweeping jet actuators on a semi-span wing model: AIAA-2016-1817[R]. Reston: AIAA, 2016.
[15] KARA K, SLUPSKI B J. Separated flow control over NACA 0012 airfoil using sweeping jet actuators: AIAA-2017-3043[R]. Reston: AIAA, 2017.
[16] LUCAS N, TAUBERT L, WOSZIDLO R, et al. Discrete sweeping jets as tools for separation control: AIAA-2008-3868[R]. Reston: AIAA, 2008.
[17] TEWES P, TAUBERT L, WYGNANSKI I. On the use of sweeping jets to augment the lift of a λ-wing: AIAA-2010-4689[R]. Reston: AIAA, 2010.
[18] JONES G S, MILHOLEN W E, CHAN D T, et al. A sweeping jet application on a high Reynolds number semi-span supercritical wing configuration: AIAA-2017-3044[R]. Reston: AIAA, 2017.
[19] 朱自强, 王凯, 黄波恩. 增强立尾效益的主动流动控制[J]. 航空学报, 2018, 39(5): 121684. ZHU Z Q, WANG K, HUANG B E. Active flow control for enhancing vertical tail efficiency[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121684 (in Chinese).
[20] SCHLOESSER P, MEYER M, SCHUELLER M, et al. Fluidic actuators for separation control at the engine/wing junction[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(5): 709-718.
[21] WILSON J, SCHATZMAN D, ARAD E, et al. Suction and pulsed-blowing flow control applied to an axisymmetric body[J]. AIAA Journal, 2013, 51(10): 2432-2446.
[22] KIM J, MOIN P, SEIFERT A. Large-eddy simulation-based characterization of suction and oscillatory blowing fluidic actuator[J]. AIAA Journal, 2017, 55(8): 2566-2579.
[23] DOLGOPYAT D, SEIFERT A. Active flow control virtual maneuvering system applied to conventional airfoil[J]. AIAA Journal, 2018, 57(1): 72-89.
[24] KOKLU M, OWENS L R. Comparison of sweeping jet actuators with different flow-control techniques for flow-separation control[J]. AIAA Journal, 2017, 55(3): 848-860.
[25] KOKLU M. Effect of a Coanda extension on the performance of a sweeping-jet actuator[J]. AIAA Journal, 2016, 54(3): 1125-1128.
[26] WOSZIDLO R, OSTERMANN F, NAYERI C N, et al. The time-resolved natural flow field of a fluidic oscillator[J]. Experiments in Fluids, 2015, 56(6): 125.
[27] BOBUSCH B C, WOSZIDLO R, KRÜGER O, et al. Numerical investigations on geometric parameters affecting the oscillation properties of a fluidic oscillator: AIAA-2013-2709[R]. Reston: AIAA, 2013.
[28] SEO J H, ZHU C, MITTAL R. Flow physics and frequency scaling of sweeping jet fluidic oscillators[J]. AIAA Journal, 2018, 56(6): 2208-2219.
[29] TIPPETTS J R, NG H K, ROYLE J K. Oscillating bistable fluid amplifier for use as a flowmeter[J]. Fluidics Quarterly, 1973, 5(1): 28-42.
[30] GOKOGLU S, KUCZMARSKI M, CULLEY D, et al. Numerical studies of a fluidic diverter for flow control: AIAA-2009-4012[R]. Reston: AIAA, 2009.
[31] GOKOGLU S, KUCZMARSKI M, CULLEY D, et al. Numerical studies of a supersonic fluidic diverter actuator for flow control: AIAA-2010-4415[R]. Reston: AIAA, 2010.
[32] WOSZIDLO R, OSTERMANN F, NAYERI C N, et al. The time-resolved natural flow field of a fluidic oscillator[J]. Experiments in Fluids, 2015, 56(6): 125.
文章导航

/