论文

激光冲击波对单晶合金抗热腐蚀性能的影响

  • 胡宪亮 ,
  • 乔红超 ,
  • 赵吉宾 ,
  • 陆莹 ,
  • 吴嘉俊 ,
  • 杨玉奇
展开
  • 1. 中国科学院沈阳自动化研究所 机器人学国家重点实验室, 沈阳 110016;
    2. 中国科学院机器人与智能制造创新研究院, 沈阳 110169;
    3. 中国科学院大学, 北京 100049

收稿日期: 2021-03-30

  修回日期: 2021-05-10

  网络出版日期: 2021-06-08

基金资助

国家自然科学基金(51875558);国家基金委-辽宁省联合基金(U1608259)

Effect of laser shock wave on thermal corrosion resistance of single crystal alloy

  • HU Xianliang ,
  • QIAO Hongchao ,
  • ZHAO Jibin ,
  • LU Ying ,
  • WU Jiajun ,
  • YANG Yuqi
Expand
  • 1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-03-30

  Revised date: 2021-05-10

  Online published: 2021-06-08

Supported by

National Natural Science Foundation of China (51875558); NSFC-Liaoning Province United Foundation of China (U1608259)

摘要

针对镍基单晶高温合金叶片服役时受高温腐蚀工作环境影响极易疲劳断裂问题,研究了不同激光冲击次数下激光冲击强化对单晶合金抗热腐蚀性能的影响。利用显微硬度仪测量激光冲击前后合金纵截面的显微硬度;借助扫描电子显微镜(SEM)和能谱仪(EDS)观察和分析腐蚀层表面及纵截面的微观组织,并结合X射线衍射仪(XRD)确定腐蚀层表面相结构。实验结果表明:经激光冲击强化后,合金表面显微硬度和截面硬度影响层深度均随激光冲击次数的增加而增大;在短时热腐蚀实验中,当激光冲击次数增加到1次、2次、3次后,合金腐蚀最大单位面积增重量分别从未冲击合金的2.87 mg·cm-2降低到2.17、1.81、1.10 mg·cm-2,腐蚀层深度分别从91 μm降低到65、41、27 μm,且表面腐蚀坑的尺寸、深度和数量明显下降,保护性氧化膜致密性得到提高。所得结果表明激光冲击强化能有效提高900℃/75% Na2SO4-25% NaCl盐膜条件下单晶合金的抗热腐蚀性能。

本文引用格式

胡宪亮 , 乔红超 , 赵吉宾 , 陆莹 , 吴嘉俊 , 杨玉奇 . 激光冲击波对单晶合金抗热腐蚀性能的影响[J]. 航空学报, 2022 , 43(4) : 525591 -525591 . DOI: 10.7527/S1000-6893.2021.25591

Abstract

Nickel-based single crystal superalloy blades are prone to fatigue and fracture in the high-temperature corrosion working environment during service. The effect of laser shock processing on the thermal corrosion resistance of single crystal alloy with different number of laser shock was studied. The microhardness of the longitudinal section of the alloy before and after laser shock was measured by using the microhardness tester. The microstructures of the surface and longitudinal section of the corrosion layer were observed and analyzed by using the Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS), and the surface phase structure of the corrosion layer was determined by using the X-Ray Diffraction (XRD). The experimental results show that after the alloy was strengthened by laser shock, the surface microhardness and section hardness influence layer depth of the alloy both increase with the increase of the number of laser shock. During the short-term thermal corrosion experiment of the alloy, when the number of laser shock increased to 1, 2, and 3 times, the maximum weight gain per unit area of corroded alloy decreased from the value of alloy without laser shock 2.87 mg·cm-2 to 2.17, 1.81, 1.10 mg·cm-2; the corrosion layer depth reduced from 91 μm to 65, 41, 27 μm; the size, depth and number of surface corrosion pits were significantly reduced, and compactness of the protective oxide film was improved. The results show that laser shock processing can effectively improve the thermal corrosion resistance of single crystal alloy under the condition of 900℃/75% Na2SO4-25% NaCl salt film.

参考文献

[1] SUN W K, XU Y M, HU C Y, et al. Effect of film-hole configuration on creep rupture behavior of a second generation nickel-based single crystal superalloys[J]. Materials Characterization, 2017, 130:298-310.
[2] 荆甫雷, 王荣桥, 胡殿印, 等. 单晶高温疲劳损伤参量的选取与寿命建模[J]. 航空学报, 2016, 37(9):2749-2756. JING F L, WANG R Q, HU D Y, et al. Damage parameter determination and life modeling for high temperature fatigue of single crystals[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2749-2756(in Chinese).
[3] 董建民, 李嘉荣, 韩梅. 检验腐蚀对镍基单晶高温合金高周疲劳性能的影响[J]. 材料工程, 2020, 48(1):77-83. DONG J M, LI J R, HAN M. Effects of check corrosion on high cycle fatigue properties of nickel-base single crystal superalloy[J]. Journal of Materials Engineering, 2020, 48(1):77-83(in Chinese).
[4] 王盼航, 余竹焕, 张洋, 等. 预氧化对一种镍基单晶高温合金的热腐蚀影响[J]. 材料科学与工艺, 2018, 26(6):36-42. WANG P H, YU Z H, ZHANG Y, et al. Effect of pre-oxidation on hot corrosion of a nickel-base superalloy[J]. Materials Science and Technology, 2018, 26(6):36-42(in Chinese).
[5] 李树索, 韩雅芳, 肖程波, 等. Ni3Al基合金IC6及MCrAlY包覆涂层的抗腐蚀性能[J]. 中国有色金属学报, 2003, 13(6):1451-1455. LI S S, HAN Y F, XIAO C B, et al. Corrosion resistances of Ni3Al based alloy IC6 and MCrAlY overlay coatings[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6):1451-1455(in Chinese).
[6] OZGURLUK Y, DOLEKER K M, KARAOGLANLI A C. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt[J]. Applied Surface Science, 2018, 438:96-113.
[7] 宋鹏, 姜祥伟, 吴俊杰, 等. DD421单晶高温合金在无SOx气氛下的低温热腐蚀硫化行为[J]. 材料工程, 2021, 49(6):109-115. SONG P, JIANG X W, WU J J, et al. Sulfidation behavior in low-temperature hot corrosion of single crystal superalloy DD421 without SOx atmosphere[J]. Journal of Materials Engineering, 2021, 49(6):109-115(in Chinese).
[8] KIM D, KIM D, LEE H J, et al. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen[J]. Journal of Nuclear Materials, 2013, 441(1-3):612-622.
[9] SUN Z P, HE G Y, MENG Q J, et al. Corrosion mechanism investigation of TiN/Ti coating and TC4 alloy for aircraft compressor application[J]. Chinese Journal of Aeronautics, 2020, 33(6):1824-1835.
[10] KOVACI H, BOZKURT Y B, YETIM A F, et al. The effect of surface plastic deformation produced by shot peening on corrosion behavior of a low-alloy steel[J]. Surface and Coatings Technology, 2019, 360:78-86.
[11] OKORO S C, MONTGOMERY M, FRANDSEN F J, et al. Influence of preoxidation on high temperature corrosion of a Ni-based alloy under conditions relevant to biomass firing[J]. Surface and Coatings Technology, 2017, 319:76-87.
[12] WANG Y, PAN X Y, WANG X B, et al. Influence of laser shock peening on surface integrity and tensile property of high strength low alloy steel[J]. Chinese Journal of Aeronautics, 2021, 34(6):199-208.
[13] 乔红超, 胡宪亮, 赵吉宾, 等. 激光冲击强化的影响参数与发展应用[J]. 表面技术, 2019, 48(12):1-9, 53. QIAO H C, HU X L, ZHAO J B, et al. Influence parameters and development application of laser shock processing[J]. Surface Technology, 2019, 48(12):1-9, 53(in Chinese).
[14] 苟磊, 马玉娥, 杜永, 等. 7050凹槽铝板激光冲击强化残余应力分布与疲劳寿命[J]. 航空学报, 2019, 40(12):423096. GOU L, MA Y, DU Y, et al. Residual stress profile and fatigue life of 7050 aluminum plate with groove under laser shot peening[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):423096(in Chinese).
[15] GENG Y X, DONG X, WANG K D, et al. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure[J]. Optics & Laser Technology, 2020, 123:105917.
[16] LU G X, LIU J D, QIAO H C, et al. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy[J]. Materials Science and Engineering:A, 2017, 686:46-53.
[17] 鲁金忠, 周婉婷, 张圣洋, 等. 激光冲击强化层数对6061-T6铝合金抗腐蚀性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3):842-849. LU J Z, ZHOU W T, ZHANG S Y, et al. Effect of coverage layer on corrosion resistance of 6061-T6 aluminum alloy subjected to laser shock peening[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3):842-849(in Chinese).
[18] NING C Y, ZHANG G Y, YANG Y P, et al. Effect of laser shock peening on electrochemical corrosion resistance of IN718 superalloy[J]. Applied Optics, 2018, 57(10):2467-2473.
[19] GE M Z, XIANG J Y. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 2016, 680:544-552.
[20] JOHNSON J N, ROHDE R W. Dynamic deformation twinning in shock-loaded iron[J]. Journal of Applied Physics, 1971, 42(11):4171-4182.
[21] PEYRE P, FABBRO R. Laser shock processing:A review of the physics and applications[J]. Optical and Quantum Electronics, 1995, 27(12):1213-1229.
[22] HU X L, WU J J, ZHAO J B, et al. Numerical simulation of the surface morphology and residual stress field of IN718 alloy by Gaussian mode laser shock[J]. Optik, 2020, 207:164441.
[23] GILL A, TELANG A, MANNAVA S R, et al. Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy[J]. Materials Science and Engineering:A, 2013, 576:346-355.
[24] LIU K, YANG H F, XIONG F, et al. Research on the dynamic yield strength and forming depth of microscale laser shock imprinting[J]. Optics & Laser Technology, 2019, 116:189-195.
[25] 中国金属学会高温材料分会. 中国高温合金手册:下册[M]. 北京:中国质检出版社和中国标准出版社, 2012. Academic Committee of the Superalloys, CSM. China superalloys handbook:Part Two[M]. Beijing:Quality Inspection Press of China and Standards Press of China, 2012(in Chinese).
[26] 郑刚, 孟宪凯, 陈松玲, 等. 激光温喷丸强化Inconel718镍基合金热腐蚀性能研究[J]. 中国激光, 2016, 43(4):0403005. ZHENG G, MENG X K, CHEN S L, et al. Research on hot-corrosion of Inconel718 nickel-based alloy treated by warm laser shock peening[J]. Chinese Journal of Lasers, 2016, 43(4):0403005(in Chinese).
[27] 李艳明, 刘欢, 乔志, 等. 镍基高温合金DD5、DD10和DSM11热腐蚀行为比较[J]. 中国有色金属学报, 2020, 30(9):2105-2115. LI Y M, LIU H, QIAO Z, et al. Comparison on hot corrosion behaviors of Ni-base superalloy DD5, DD10 and DSM11[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9):2105-2115(in Chinese).
[28] CHEN L, ZHANG X Z, GAN S Y. Microstructure and hot corrosion of GH2036 alloy treated by laser shock peening[J]. JOM, 2020, 72(2):754-763.
[29] HUA Y Q, RONG Z, YE Y X, et al. Laser shock processing effects on isothermal oxidation resistance of GH586 superalloy[J]. Applied Surface Science, 2015, 330:439-444.
[30] CAO J D, ZHANG J S, HUA Y Q, et al. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing[J]. Materials Characterization, 2017, 125:67-75.
文章导航

/