航空发动机运行安全专栏

航空发动机导叶控制机构作动筒主动容错控制

  • 杨晓伟 ,
  • 葛曜文 ,
  • 邓文翔 ,
  • 姚建勇 ,
  • 周宁
展开
  • 南京理工大学 机械工程学院, 南京 210094

收稿日期: 2021-03-10

  修回日期: 2021-04-09

  网络出版日期: 2021-06-08

基金资助

国家自然科学基金(51905271, 52075262)

Active fault-tolerant control for hydraulic actuating cylinders of aeroengine guide vane control mechanisms

  • YANG Xiaowei ,
  • GE Yaowen ,
  • DENG Wenxiang ,
  • YAO Jianyong ,
  • ZHOU Ning
Expand
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2021-03-10

  Revised date: 2021-04-09

  Online published: 2021-06-08

Supported by

National Natural Science Foundation of China (51905271, 52075262)

摘要

航空发动机导叶控制机构液压作动筒在高速、高温、变载荷等条件下发生故障时, 会导致液压作动筒工作状态受限, 引起系统实际的物理参数发生突变, 进一步加剧了系统的参数不确定性以及未建模干扰, 从而恶化整个系统的位置跟踪精度, 严重时使航空发动机失稳。为提高航空发动机导叶控制机构液压作动筒在故障发生时的控制性能与容错能力, 提出了一种积分鲁棒自适应主动容错控制策略。为减小参数不确定性, 提出了一种基于参数估计误差与跟踪误差的复合参数自适应律, 不仅可以实现参数的快速收敛, 还提高了系统的主动容错能力。为消除参数不确定性与抵抗外干扰, 利用积分鲁棒反馈思想发展了一种积分鲁棒自适应主动容错控制, 进一步增强了液压作动筒的容错能力与位置跟踪能力。基于Lyapunov理论, 证明了该主动容错控制策略在外干扰下能实现系统位置跟踪误差的渐近收敛。仿真结果表明, 提出的主动容错控制策略和现有的容错方法相比具有良好的参数自适应能力和抗干扰能力, 估计的参数在7 s内可快速收敛。

本文引用格式

杨晓伟 , 葛曜文 , 邓文翔 , 姚建勇 , 周宁 . 航空发动机导叶控制机构作动筒主动容错控制[J]. 航空学报, 2022 , 43(9) : 625464 -625464 . DOI: 10.7527/S1000-6893.2021.25464

Abstract

When hydraulic actuating cylinders of aeroengine guide vane control mechanisms fail under the conditions of high speed, high temperature and variable loads, the working states of hydraulic actuating cylinders will be limited and the actual physical parameters of the system will change abruptly, which further aggravates parametric uncertainties and unmodeled disturbances and deteriorates position tracking accuracy and even makes the system unstable. To improve the control performance and fault-tolerance ability of hydraulic actuating cylinders, this paper proposes an integral robust adaptive active fault-tolerant control strategy for motion tracking control of aeroengine hydraulic actuating cylinders under fault conditions. To reduce parametric uncertainties, a composite parameter adaptive law is developed based on both parameter estimation errors and the tracking error, which can not only achieve fast convergence rates of parameters, but also improve the active fault tolerance of the system. To eliminate the remaining parametric uncertainties and external disturbances, an integral robust adaptive active fault-tolerant control method is presented, which further enhances the fault-tolerant ability and tracking accuracy of the hydraulic actuating cylinder. On basis of the Lyapunov theory, it is demonstrated that the active fault-tolerant control strategy can realize asymptotic convergence of the tracking error under external disturbances. The simulation results show that the proposed active fault-tolerant control strategy has better parameter adaptive ability and anti-disturbance ability than existing fault-tolerant control methods, and the estimated parameters can converge quickly within 7 s.

参考文献

[1] WANG C X. Hydraulic control system[M]. Beijing: Machinery Industry Press, 2008: 40-52(in Chinese). 王春行. 液压控制系统[M]. 北京: 机械工业出版社, 2008: 40-52.
[2] QIU G Q. Hydraulic technology and application[M]. Beijing: Post & Telecom Press, 2008: 23-42(in Chinese). 邱国庆. 液压技术与应用[M]. 北京: 人民邮电出版社, 2008: 23-42.
[3] WU Z S. Hydraulic control system[M]. Beijing: Higher Education Press, 2008: 40-56(in Chinese). 吴振顺. 液压控制系统[M]. 北京: 高等教育出版社, 2008: 40-56.
[4] YAO B, TOMIZUKA M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form[J]. Automatica, 1997, 33(5): 893-900.
[5] YAO B, BU F, REEDY J, et al. Adaptive robust motion control of single-rod hydraulic actuators: Theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2002, 5(1): 79-91.
[6] YAO J Y, JIAO Z X, MA D W. A practical nonlinear adaptive control of hydraulic servomechanisms with periodic-like disturbances[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 2752-2760.
[7] YAO J Y, DENG W X. Active disturbance rejection adaptive control of uncertain nonlinear systems: theory and application[J]. Nonlinear Dynamics, 2017, 89(3): 1611-1624.
[8] YAO J Y, DENG W X. Activedisturbance rejection adaptive control of hydraulic servo systems[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8023-8032.
[9] WANG J. Technical analysis and improvement of military engine control system[J]. National Defense Science and Technology, 2014, 35(3): 36-39(in Chinese). 王兢. 军用发动机控制系统技术分析及改进研究[J]. 国防科技, 2014, 35(3): 36-39.
[10] WANG B, YE Z F. Aeroengine hydraulic control system[M]. Beijing: Science Press, 2019: 160-161(in Chinese). 王彬, 叶志锋. 航空发动机液压控制系统[M]. 北京: 科学出版社, 2019: 160-161.
[11] CHEN X F, WANG S B, CHNEG L. Research on matching synchronous compression transform of aeroengine fast changing signals[J]. Journal of Mechanical Engineering, 2019, 55(13): 13-22(in Chinese). 陈雪峰, 王诗彬, 程礼. 航空发动机快变信号的匹配同步压缩变换研究[J]. 机械工程学报, 2019, 55(13): 13-22.
[12] HE J F, CHEN X, LU P Y, et al. Theoretical analysis and experimental study on two-dimensional cartridge servo valve[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 422590(in Chinese). 何晋飞, 陈烜, 鲁鹏勇, 等. 插装式二维(2D)伺服阀的理论分析与实验研究[J]. 航空学报, 2019, 40(5): 422590.
[13] NA J, YANG J, WU X, et al. Robust adaptive parameter estimation of sinusoidal signals[J]. Automatica, 2015, 53: 376-384.
[14] XIAN B, QUEIROZ M S D, DAWSON D M, et al. A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems[J]. Automatica, 2004, 40(4): 695-700.
[15] YUE X, YAO J Y. Asymptotic tracking control of electro-hydraulic load simulator based on integral robust[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 420269(in Chinese). 岳欣, 姚建勇. 基于积分鲁棒的电液负载模拟器渐近跟踪控制[J]. 航空学报, 2017, 38(2): 420269.
[16] YAO J Y, DENG W X, JIAO Z X. Rise-based adaptive control of hydraulic systems with asymptotic tracking[J]. IEEE Transactions on Automation Science and Engineering, 2015, 99: 1-8.
[17] HERBERT E M. Hydraulic control systems[M]. New York: John Wiley & Sons, Inc., 1967: 165-167.
[18] FITCH E C, HONG I T. Hydraulic component design and selection[M]. Stillwater: Bar Dyne, Inc., 2004: 52-59.
[19] KHALIL H. Nonlinear systems[M]. Upper Saddle River: Prentice-Hall, 2002: 218.
[20] YANG X W, YAO J Y, DENG W X. Output feedback adaptive super-twisting sliding mode control of hydraulic systems with disturbance compensation[J]. ISA Transactions, 2021, 109: 175-185.
文章导航

/