ARJ21飞机尾涡在侧风条件下的近地演化数值研究

  • 张钧铎 ,
  • 左青海 ,
  • 林孟达 ,
  • 黄伟希 ,
  • 潘卫军 ,
  • 崔桂香
展开
  • 1. 清华大学航天航空学院
    2. 中国民用航空飞行学院
    3. 清华大学
    4. 清华大学航院

收稿日期: 2020-12-03

  修回日期: 2021-06-01

  网络出版日期: 2021-06-08

基金资助

国家自然科学基金民航联合基金;民航安全能力建设项目

Numerical Study on near-field evolution of wake vortices of ARJ21 plane under crosswind

  • ZHANG Jun-Duo ,
  • ZUO Qing-Hai ,
  • LIN Meng-Da ,
  • HUANG Wei-Xi ,
  • PAN Wei-Jun ,
  • CUI Gui-Xiang
Expand

Received date: 2020-12-03

  Revised date: 2021-06-01

  Online published: 2021-06-08

摘要

尾流间隔是飞机起降安全的重要保障,也是制约机场效率的重要因素之一,而飞机尾涡的近地演化特性与规律是制定尾流间隔系统的基础和依据。因此,研究国产机型的尾涡近地演化特性与规律具有重要的现实意义。本文应用升力面模型初始化尾涡流场,采用自适应网格大涡模拟技术数值研究ARJ21客机尾涡在侧风条件下的近地演化过程,并分析在不同侧风条件下尾涡的演化与衰减特性。数值结果显示上游涡与下游涡演化具有不对称性,其中下游涡衰减更快,但移动距离更远,并且侧风越强尾涡衰减越快。此外,本文根据ARJ21尾涡的数值结果分析了不同机型跟随ARJ21进近时的安全性,发现重型机可不考虑其尾涡影响,而中型机和轻型机需根据气象条件选择合适的最小尾流间隔。

本文引用格式

张钧铎 , 左青海 , 林孟达 , 黄伟希 , 潘卫军 , 崔桂香 . ARJ21飞机尾涡在侧风条件下的近地演化数值研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.21.25043

Abstract

Wake separation is crucial to the security of aircraft landing, and is also an important factor of restricting the airport efficiency. The characteristics of near-field evolution of wake vortices is the foundation of the wake separation sys-tem. Therefore, it is of great practical significance to investigate the near-field evolution of wake vortices for domestic aircraft. In the present study, the effect of crosswind on the near-field evolution of wake vortices of ARJ21 plane, ini-tialized by the lift-drag model, are analyzed by using the large eddy simulation based on adaptive mesh. The nu-merical results show that the evolution of the upstream vortex and downstream vortex is asymmetric. The down-stream vortex decays more rapidly and translates farther than the upstream vortex, and the wake vortices decay more rapidly as the crosswind gets stronger. In addition, the security of the following plane after ARJ21 is also ana-lyzed from the numerical results. It is found that heavy plane is not affected by wake vortices of ARJ21 whereas the medium-sized and light planes require adequate wake separation according to the weather condition.

参考文献

[1] 赵旭东, 贾荣珍. ARJ21飞机工程模拟器关键技术研究. 系统仿真学报, 2009, 21(21):6856-6858.
[2] 柏蓓. 从这里开始,飞向世界——记ARJ21飞机开通首条国际航线. 大飞机, 2019(11):46-49.
[3] 杨毅. ARJ21未来怎么飞. 大飞机, 2018(11):54-55.
[4] Perry R B, Hinton D A, Stuever R A. NASA wake vortex research for aircraft spacing. AIAA paper, 1997, 57.
[5] O’Connor C J, Rutishauser D K. Enhanced airport capacity through safe, Dynamic reductions in aircraft separation: NASA's Aircraft Vortex Spacing System (AVOSS). NASA, 2001-211052.
[6] Holz?pfel F, Gerz T, Frech M, et al. The wake vortex prediction and monitoring system WSVBS Part I: Design. Air Traffic Control Quarterly, 2009, 17(4): 301.
[7] Gerz T, Holz?pfel F, Gerling W, et al. The wake vortex prediction and monitoring system WSVBS Part II: Performance and ATC integration at Frankfurt airport. Air Traffic Control Quarterly, 2009, 17(4): 323-346.
[8] Matayoshi N. Dynamic wake vortex separation according to weather condition. 2013 Aviation Technology, Integration, and Operations Conference. 2013: 4425.
[9] Matayoshi N, Yoshikawa E. Dynamic wake vortex separation Combining with AMAN/DMAN Concept. 15th AIAA Aviation Technology, Integration, and Operations Conference. 2015: 3397.
[10] 林孟达, 崔桂香, 张兆顺, 等. 飞机尾涡演变及快速预测的大涡模拟研究. 力学学报, 2017, 49(6).
[11] Burnham D C, Hallock J N. Chicago monostatic acoustic vortex sensing system. Volume IV, Wake vortex decay. Department of Transportation, Rep. No. DOT/FAA/RD-79-103 IV, July 1982, 206 pp.
[12] Robins R E, Delisi D P, Greene G C. Algorithm for prediction of trailing vortex evolution. Journal of Aircraft, 2001, 38(5): 911-917.
[13] 林孟达. 飞机尾涡演化特性与安全预测的大涡模拟研究[D].清华大学,2016.
[14] Zheng Z C, Ash R L. Study of aircraft wake vortex behavior near the ground[J]. AIAA journal, 1996, 34(3): 580-589.
[15] Holz?pfel F, Steen M. Aircraft wake-vortex evolution in ground proximity: analysis and parameterization[J]. AIAA journal, 2007, 45(1): 218-227.
[16] Proctor, F. H., Hamilton, D. W., and Han, J., Wake vortex transport and decay in ground effect: Vortex linking with the ground[J], AIAA Paper., 2000.No. 2000-0757.
[17] Proctor F H. Numerical study of a long-lived, isolated wake vortex in ground effect. Proc. of 6th AIAA Atmospheric and Space Environment Conference, Atlanta. 2014: 6-16.
[18] Zhang, J.-D., Zuo, Q.-H. Lin, M.-D., Huang, W.-X., Pan, W.-J. and Cui, G.-X. Evolution of vortices in the wake of an ARJ21 airplane: Application of the lift-drag model[J]. Theoretical & Applied Mechanics Letters, 2020, 10(6): 419-428
[19] Meneveau C, Lund T S, Cabot W H. A Lagrangian dynamic subgrid-scale model of turbulence. Journal of Fluid Mechanics, 1996, 319: 353-385.
[20] Proctor F H. Numerical simulation of wake vortices measured during the Idaho Falls and Memphis field programs[J]. AIAA Paper, 1996, 96-2496
[21] Proctor F H, Hinton D A, Han J, et al. Two dimensional wake vortex simulations in the atmosphere: Preliminary sensitivity studies[J]. AIAA Paper, 1997, 97-0056
[22] Robins R E, Delisi D P. Numerical study of vertical shear and stratification effects on the evolution of a vortex pair[J]. AIAA journal, 1990, 28(4): 661-669.
[23] Corjon A, Poinsot T. Behavior of wake vortices near ground[J]. AIAA journal, 1997, 35(5): 849-855.
[24] Shen S H, Ding F, Han J, et al. Numerical modeling studies of wake vortices: real case simulations[C]. 37th Aerospace Sciences Meeting & Exhibit, 11-14 January, 1999, Reno, NV, AIAA Paper No. 99-0755.
[25] Proctor, F. H., and Han, J. Numerical study of wake vortex interaction with the ground using the terminal area simulation system[C]. 37th Aerospace Sciences Meeting & Exhibit, 1999, AIAA-99-0754.
[26] Holz?pfel F, Gerz T, Baumann R. The turbulent decay of trailing vortex pairs in stably stratified environments[J]. Aerospace Science and Technology, 2001, 5(2): 95-108.
[27] Hennemann I, Holz?pfel F. Large-eddy simulation of aircraft wake vortex deformation and topology. Proceedings of the Institution of Mechanical Engineers[J], Part G: Journal of Aerospace Engineering, 2011, 225(12): 1336-1350.
[28] Misaka T, Holz?pfel F, Gerz T. Large-eddy simulation of aircraft wake evolution from roll-up until vortex decay[J]. AIAA Journal, 2015, 53(9): 2646-2670.
[29] Lin M. D., Cui G. X., Zhang Z. S. Large eddy simulation of aircraft wake vortex with self-adaptive grid method. Applied Mathematics and Mechanics[J]. 2016, 37(10): 1289–1304
[30] Shi R F, Cui G X, Wang Z S, et al. Large eddy simulation of wind field and plume dispersion in building array. Atmospheric Environment, 2008, 42(6): 1083-1097.
[31] Liu Y S, Cui G X, Wang Z S, et al. Large eddy simulation of wind field and pollutant dispersion in downtown Macao. Atmospheric environment, 2011, 45(17): 2849-2859.
[32] Wang B B, Wang Z S, Cui G X, et al. Study on the dynamic characteristics of flow over building cluster at high Reynolds number by large eddy simulation. SCIENCE CHINA Physics, Mechanics & Astronomy, 2014, 57(6): 1144-1159.
[33] Gnoffo P A. A finite-volume, adaptive grid algorithm applied to planetary entry flowfields. AIAA journal, 1983, 21(9): 1249-1254.
[34] Lin M. D., Cui G. X., Zhang Z. S. A new vortex sheet model for simulating aircraft wake vortex evolution[J]. Chinese Journal of Aeronautics, 2017, 30(04):39-50.
[35] Keye S. Fluid-structure coupled analysis of a transport aircraft and flight-test validation. Journal of Aircraft, 2011, 48(2): 381-390.
[36] 吴子牛, 王兵, 周睿. 空气动力学. 清华大学出版社 2007.
[37] 赵鸣. 大气边界层动力学. 高等教育出版社, 2006.
[38] Jarraud M. Guide to meteorological instruments and methods of observation (wmo-no. 8). World Meteorological Organisation: Geneva, Switzerland, 2008.
[39] Han J, Arya S P, Shaohua S, et al. An estimation of turbulent kinetic energy and energy dissipation rate based on atmospheric boundary layer similarity theory. 2000. NASA CR-2000-210298.
[40] Arya S P. Atmospheric boundary layer and its parameterization. Wind Climate in Cities. Springer Netherlands, 1995: 41-66.
[41] Rogallo R S. Numerical experiments in homogeneous turbulence. National Aeronautics and Space Administration. 1981. TM-81315.
[42] Bechara W, Bailly C, Lafon P, et al. Stochastic approach to noise modeling for free turbulent flows. AIAA journal, 1994, 32(3): 455-463.
[43] Jeong J, Hussain F. On the identification of a vortex. Journal of Fluid Mechanics, 1995, 332(1):339-363.
[44] Holz?pfel F. Probabilistic two-phase wake vortex decay and transport model. Journal of Aircraft, 2003, 40(2): 323-331.
[45] Crow S C. Stability theory for a pair of trailing vortices. AIAA journal, 1970, 8(12): 2172-2179.
[46] Schwarz C W, Hahn K U. Full-flight simulator study for wake vortex hazard area investigation. Aerospace Science and Technology, 2006, 10(2): 136-143.
[47] Lang S, Tittsworth J, Bryant W H, et al. Progress on an ICAO Wake Turbulence Re-Categorization Effort. AIAA Paper, 2010, 7682.
文章导航

/