综述

基于传递函数特征的机械结构故障诊断方法新进展

  • 李全坤 ,
  • 景兴建
展开
  • 1. 西北工业大学 动力与能源学院, 西安 710129;
    2. 香港理工大学 机械工程系, 香港 999077

收稿日期: 2020-10-08

  修回日期: 2020-12-05

  网络出版日期: 2021-06-08

基金资助

中央高校基本科研业务费专项资金(3102020OQD705);香港研究资助局优配研究金(15206717)

Recent advances of fault diagnosis methods based on transmissibility function for mechanical structures

  • LI Quankun ,
  • JING Xingjian
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China;
    2. Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China

Received date: 2020-10-08

  Revised date: 2020-12-05

  Online published: 2021-06-08

Supported by

The Fundamental Research Funds for the Central Universities (3102020OQD705); The General Research Fund (GRF) Project of Hong Kong Research Grants Council (RGC) (15206717)

摘要

故障诊断对估计机械结构的健康状态非常重要,诊断方法一直以来也是研究的热点问题。与其他故障诊断方法相比,基于传递函数的故障诊断方法操作简单,提供的故障特征和指示因子也更加灵敏有效。根据所利用的线性传递函数或非线性传递函数的类型不同、基于传递函数的故障诊断方法目前大概有4类,即一般线性方法、一般非线性方法、基于广义频响函数(GFRF)方法和基于二阶输出频谱(SOOS)方法。本文旨在对各种基于传递函数的故障诊断方法研究进展进行梳理,通过带阻尼弹簧单元的多自由度模型解释各种方法的基本原理和操作流程,通过具体的仿卫星结构中螺栓松动故障实验比较各种方法的优缺点,探讨现有故障指示因子灵敏度的提高方式及现有方法在其他复杂机械结构中的运用前景。

本文引用格式

李全坤 , 景兴建 . 基于传递函数特征的机械结构故障诊断方法新进展[J]. 航空学报, 2021 , 42(11) : 524845 -524845 . DOI: 10.7527/S1000-6893.2021.24845

Abstract

The importance of fault diagnosis to health monitoring of mechanical structures draws extensive attention from researchers to diagnosis methods. Transmissibility function based methods, compared with other diagnosis methods, are much simpler and provide more sensitive and effective damage features and indexes. According to different transmissibility functions adopted, either linear or nonlinear, transmissibility function based methods can be classified into four categories:general linear methods, general nonlinear methods, methods based on Generalized Frequency Response Function (GFRF) and methods based on the Second Order Output Spectrum (SOOS). The main purpose of this article is to provide a comprehensive review on recent advances of fault diagnosis methods based on linear and nonlinear transmissibility functions, explain their basic principles and procedures through nonlinear multiple degrees of freedom models, demonstrate their merits and demerits with experimental results on a bolted satellite-like structure, and discuss their improvement in sensitivity of related damage indicators and potential applications to some complex structures.

参考文献

[1] BICKFORD J. Handbook of bolts and bolted joints[M]. Boca Raton:CRC Press, 1998.
[2] BICKFORD J H. Introduction to the design and behaviour of bolted joints:Nongasketed joints[M]. Boca Raton:CRC press, 2007.
[3] 王燕, 刘正平. 设备裂纹故障监测和诊断技术应用[J]. 煤矿机械, 2008, 29(12):210-212. WANG Y, LIU Z P. Summarization of application of device crack fault observation and diagnosis technology[J]. Coal Mine Machinery, 2008, 29(12):210-212(in Chinese).
[4] 王新波, 付成勇, 王鑫伟. 某型飞机发动机舱供压导管漏油故障分析[J]. 航空维修与工程, 2017(2):86-87. WANG X B, FU C Y, WANG X W. Failure analysis on oil leakage of pressure vessel for a certain type of aero-engine[J]. Aviation Maintenance & Engineering, 2017(2):86-87(in Chinese).
[5] 张敬芬, 赵德有. 工程结构裂纹损伤振动诊断的发展现状和展望[J]. 振动与冲击, 2002(4):21, 22-26. ZHANG J F, ZHAO D Y. Summary review of vibration-based crack diagnosis technique for engineering structures[J]. Journal of Vibration and Shock, 2002(4):21, 22-26(in Chinese).
[6] GILLICH G R, AMAN A T, ABDEL W M, et al. Detection of multiple cracks using an energy method applied to the concept of equivalent healthy beam[M]//Lecture Notes in Mechanical Engineering. Singapore:Springer Singapore, 2019:63-78.
[7] 朱宏平, 余璟, 张俊兵. 结构损伤动力检测与健康监测研究现状与展望[J]. 工程力学, 2011, 28(2):1-11, 17. ZHU H P, YU J, ZHANG J B. A summary review and advantages of vibration-based damage identification methods in structural health monitoring[J]. Engineering Mechanics, 2011, 28(2):1-11, 17(in Chinese).
[8] BALAGEAS D, FRITZEN C P, GEMES A. Structural health monitoring[M]. London:ISTE, 2006.
[9] RYTTER A. Vibrational based inspection of civil engineering structures[D]. Aalborg:Aalborg University, 1993.
[10] Los Alamos National Laboratory. Linear and nonlinear methods for detecting cracks in beams[R]. New Mexico:Los Alamos National Laboratory, 1995.
[11] KRAWCZUK M, OSTACHOWICZ W. Damage indicators for diagnostic of fatigue cracks in structures by vibration measurements-a survey[J]. Journal of Theoretical and Applied Mechanics, 1996, 34(2):307-326.
[12] Los Alamos National Laboratory. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics:A literature review[R]. New Mexico:Los Alamos National Laboratory, 1996.
[13] FARRAR C R, DOEBLING S W, NIX D A. Vibration-based structural damage identification[J]. Philosophical Transactions of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 2001, 359(1778):131-149.
[14] CARDEN E P, FANNING P. Vibration based condition monitoring:A review[J]. Structural Health Monitoring, 2004, 3(4):355-377.
[15] NIKRAVESH S M Y, GOUDARZI M. A review paper on looseness detection methods in bolted structures[J]. Latin American Journal of Solids and Structures, 2017, 14(12):2153-2176.
[16] MOTTERSHEAD J E. On the zeros of structural frequency response functions and their sensitivities[J]. Mechanical Systems and Signal Processing, 1998, 12(5):591-597.
[17] JOHSON T J. Analysis of dynamic transmissibility as a feature for structural health monitoring[D]. West Lafayette:Purdue University, 2001.
[18] CHESNÉ S, DERAEMAEKER A. Damage localization using transmissibility functions:A critical review[J]. Mechanical Systems and Signal Processing, 2013, 38(2):569-584.
[19] ZHAO X Y. New methods for structural health monitoring and damage localization[D]. Sheffield:University of Sheffield, 2015.
[20] YAN W J, ZHAO M Y, SUN Q, et al. Transmissibility-based system identification for structural health Monitoring:Fundamentals, approaches, and applications[J]. Mechanical Systems and Signal Processing, 2019, 117:453-482.
[21] CHEN Q, CHAN Y W, WORDEN K, et al. Structural fault detection using neural networks trained on transmissibility functions[C]//Presented at the proceedings of the International Conference on Vibration Engineering, 1994:456-646.
[22] WORDEN K. Structural fault detection using a novelty measure[J]. Journal of Sound and Vibration, 1997, 201(1):85-101.
[23] CHEN Q, CHAN Y W, WORDEN K. Structural fault diagnosis and isolation using neural networks based on response-only data[J]. Computers & Structures, 2003, 81(22-23):2165-2172.
[24] WORDEN K, MANSON G, FIELLER N R J. Damage detection using outlier analysis[J]. Journal of Sound and Vibration, 2000, 229(3):647-667.
[25] PAPATHEOU E, MANSON G, BARTHORPE R J, et al. The use of pseudo-faults for novelty detection in SHM[J]. Journal of Sound and Vibration, 2010, 329(12):2349-2366.
[26] BU N, ICHIKI M, UENO N, et al. A flexible piezoelectric film sensor for fault diagnosis of pipe systems[C]//IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE Press, 2007:2181-2186.
[27] YANG W X, LANG Z Q, TIAN W Y. Condition monitoring and damage location of wind turbine blades by frequency response transmissibility analysis[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10):6558-6564.
[28] ZHOU Y L, WAHAB M A, PERERA R. Damage detection by transmissibility conception in beam-like structures[C]//Presented at the 4th International Conference on Fracture Fatigue and Wear, 2015, 254-259.
[29] MAIA N M M, ALMEIDA R A B, URGUEIRA A P V, et al. Damage detection and quantification using transmissibility[J]. Mechanical Systems and Signal Processing, 2011, 25(7):2475-2483.
[30] ZHANG L, LANG Z Q, PAPAELIAS M. Generalized transmissibility damage indicator with application to wind turbine component condition monitoring[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10):6347-6359.
[31] LIU W, EWINS D. Transmissibility properties of MDOF systems[C]//Presented at the proceedings of SPIE-The International Society for Optical Engineering, 1998.
[32] ZHU D P, YI X H, WANG Y. A local excitation and measurement approach for decentralized damage detection using transmissibility functions[J]. Structural Control and Health Monitoring, 2016, 23(3):487-502.
[33] ZHU D P, YI X H, WANG Y, et al. A mobile sensing system for structural health monitoring:design and validation[J]. Smart Materials and Structures, 2010, 19(5):055011.
[34] SAMPAIO R P C, MAIA N M M, RIBEÍRO A M R, et al. Transmissibility techniques for damage detection[J]. Proceedings of the International Modal Analysis Conference-IMAC, 2001, 2:1524-1527.
[35] LI J, HAO H, XIA Y, et al. Damage detection of shear connectors in bridge structures with transmissibility in frequency domain[J]. International Journal of Structural Stability and Dynamics, 2014, 14(2):1350061.
[36] FENG L, YI X H, ZHU D P, et al. Damage detection of metro tunnel structure through transmissibility function and cross correlation analysis using local excitation and measurement[J]. Mechanical Systems and Signal Processing, 2015, 60-61:59-74.
[37] KONG X, CAI C S, KONG B. Damage detection based on transmissibility of a vehicle and bridge coupled system[J]. Journal of Engineering Mechanics, 2015, 141(1):04014102.
[38] SCHULZ M J. Health monitoring of composite material structures using a vibrometry technique:NAG8-1247[R].Washington,D.C.:NASA, 1998.
[39] SCHULZ M J, PAI P F, INMAN D J. Health monitoring and active control of composite structures using piezoceramic patches[J]. Composites Part B:Engineering, 1999, 30(7):713-725.
[40] ZHOU Y L, FIGUEIREDO E, MAIA N, et al. Damage detection in structures using a transmissibility-based Mahalanobis distance[J]. Structural Control and Health Monitoring, 2015, 22(10):1209-1222.
[41] REN T Q, HUI M L, LIANG J S, et al. Structural state detection using transmissibility and non-negative matrix factorization[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2015, 8(11):309-318.
[42] ZHOU Y L, MAIA N M, WAHAB M A. Damage detection using transmissibility compressed by principal component analysis enhanced with distance measure[J]. Journal of Vibration and Control, 2018, 24(10):2001-2019.
[43] ZHOU Y L, CAO H Y, LIU Q M, et al. Output-based structural damage detection by using correlation analysis together with transmissibility[J]. Materials (Basel, Switzerland), 2017, 10(8):866.
[44] ZHOU Y L, PERERA R. Damage localization via transmissibility power mode shape[C]//Presented at the 5th European-American Workshop on Reliability of NDE, 2013.
[45] SCHULZ M J, NASER A S, PAI P F, et al. Detecting Structural damage using transmittance functions[J]. Materials Science, 1997, 638-644.
[46] ZHANG H, SCHULZ M J, NASER A, et al. Structural health monitoring using transmittance functions[J]. Mechanical Systems and Signal Processing, 1999, 13(5):765-787.
[47] ZHOU Y L, FIGUEIREDO E, MAIA N, et al. Damage detection and quantification using transmissibility coherence analysis[J]. Shock and Vibration, 2015, 2015:1-16.
[48] ZHOU Y L, MAIA N M M, SAMPAIO R P C, et al. Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure[J]. Structural Health Monitoring, 2017, 16(6):711-731.
[49] LUO J, LIU G, HUANG Z M. Damage detection for shear structures based on wavelet spectral transmissibility matrices under nonstationary stochastic excitation[J]. Structural Control and Health Monitoring, 2017, 24(1):e1862.
[50] JOHNSON T J, ADAMS D E. Transmissibility as a differential indicator of structural damage[J]. Journal of Vibration and Acoustics, 2002, 124(4):634-641.
[51] BROWN R L, ADAMS D E. Equilibrium point damage prognosis models for structural health monitoring[J]. Journal of Sound and Vibration, 2003, 262(3):591-611.
[52] JOHNSON T J, BROWN R L, ADAMS D E, et al. Distributed structural health monitoring with a smart sensor array[J]. Mechanical Systems and Signal Processing, 2004, 18(3):555-572.
[53] JOHNSON T J, ADAMS D E. Rolling tire diagnostic experiments for identifying incipient bead damage using time, frequency, and phase plane analysis[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale:SAE International, 2006.
[54] HAROON M, ADAMS D E. Development of component-level damage evolution models for mechanical prognosis[J]. Journal of Applied Mechanics, 2008, 75(2):021017.
[55] LI X Z, YUE X B, HUANG W. Crack localization using transmissibility of operational deflection shape and its application in cantilever beam[J]. Journal of Applied Mathematics and Physics, 2018, 6(11):2352-2361.
[56] PENG Z K, LANG Z Q, BILLINGS S A. Non-linear output frequency response functions of MDOF systems with multiple non-linear components[J]. International Journal of Non-Linear Mechanics, 2007, 42(7):941-958.
[57] CHU F L, PENG Z K, LANG Z Q. An effective method for locating nonlinear components in periodic structures[J]. Journal of Physics:Conference Series, 2008, 96:012016.
[58] LANG Z Q, PENG Z K. A novel approach for nonlinearity detection in vibrating systems[J]. Journal of Sound and Vibration, 2008, 314(3-5):603-615.
[59] 陈民铀, 孙峰, 翟进乾, 等. 基于非线性频率响应函数的输电线路故障在线监测方法[J]. 重庆大学学报, 2010, 33(1):54-60. CHEN M Y, SUN F, ZHAI J Q, et al. The on-line monitoring method of power transmission line fault based non-linear frequency response function[J]. Journal of Chongqing University, 2010, 33(1):54-60(in Chinese).
[60] LANG Z Q, PARK G, FARRAR C R, et al. Transmissibility of non-linear output frequency response functions with application in detection and location of damage in MDOF structural systems[J]. International Journal of Non-Linear Mechanics, 2011, 46(6):841-853.
[61] LI Z Z, ZHAO D Z, LIU J R. Location of crack faults of hydraulic pipelines based on nonlinear output frequency response function[C]//20158th International Conference on Intelligent Computation Technology and Automation (ICICTA). Piscataway:IEEE Press, 2015:522-525.
[62] ZHAO X Y, LANG Z Q, PARK G, et al. A new transmissibility analysis method for detection and location of damage via nonlinear features in MDOF structural systems[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4):1933-1947.
[63] JING X J. Truncation order and its effect in a class of nonlinear systems[J]. Automatica, 2012, 48(11):2978-2985.
[64] JING X J. Nonlinear characteristic output spectrum for nonlinear analysis and design[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1):171-183.
[65] JING X J, LI Q K. A nonlinear decomposition and regulation method for nonlinearity characterization[J]. Nonlinear Dynamics, 2016, 83(3):1355-1377.
[66] LI Q K, JING X J. A second-order output spectrum approach for fault detection of bolt loosening in a satellite-like structure with a sensor chain[J]. Nonlinear Dynamics, 2017, 89(1):587-606.
[67] LI Q K, JING X J. Fault diagnosis of bolt loosening in structures with a novel second-order output spectrum-based method[J]. Structural Health Monitoring, 2020, 19(1):123-141.
[68] LI Q K, JING X J. A novel second-order output spectrum based local tuning method for locating bolt-loosening faults[J]. Mechanical Systems and Signal Processing, 2021, 147:107104.
[69] LI Q K, JING X J, GUO Y Q. The second-order output spectrum-based method for fault localization in ring type structures[J]. Nonlinear Dynamics, 2019, 98(3):1935-1955.
[70] LI Q K, JING X J. A systematic second-order output spectrum based method for fault diagnosis with a local tuning approach[J]. Journal of Sound and Vibration, 2020, 475:115283.
[71] THOMSON W T, DAHLEH M D. Theory of vibration with applications[M].New York:Pearson Education Inc., 1998.
[72] MAIA N M M, SILVA J. Theoretical and experimental modal analysis[M]. Hertfordshire:Research Studies Press LTD, 1997.
[73] LI X, ZHANG Y W, DING H, et al. Integration of a nonlinear energy sink and a piezoelectric energy harvester[J]. Applied Mathematics and Mechanics, 2017, 38(7):1019-1030.
[74] YAO H L, CAO Y B, WANG Y W, et al. A tri-stable nonlinear energy sink with piecewise stiffness[J]. Journal of Sound and Vibration, 2019, 463:114971.
[75] XUE J R, ZHANG Y W, DING H, et al. Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation[J]. Applied Mathematics and Mechanics, 2020, 41(1):1-14.
[76] WIENER N. Nonlinear problems in random theory[M]. Cambridge:John Wiley and Sons, Inc., 1958.
[77] SCHETZEN M. The Volterra and Wiener theories of nonlinear systems[M]. Hoboken:John Wiley and Sons, Inc., 1980.
[78] RUG W J. Nonlinear system theory[M]. Baltimore:Johns Hopkins University Press, 1981.
[79] JING X J, LANG Z Q. Frequency domain analysis and design of nonlinear systems based on Volterra series expansion[M]. Cham:Springer International Publishing, 2015.
[80] ZHANG Y W, XU K F, ZANG J, et al. Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions[J]. Applied Mathematics and Mechanics, 2019, 40(12):1791-1804.
[81] WANG H, JING X J. Vibration signal-based fault diagnosis in complex structures:A beam-like structure approach[J]. Structural Health Monitoring, 2018, 17(3):472-493.
文章导航

/