流体力学与飞行力学

民机极限飞行状态非定常气动力建模

  • 岑飞 ,
  • 刘志涛 ,
  • 蒋永 ,
  • 郭天豪 ,
  • 张磊 ,
  • 孔轶男
展开
  • 1. 中国空气动力研究与发展中心 低速空气动力研究所, 绵阳 621000;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2021-03-29

  修回日期: 2021-06-02

  网络出版日期: 2021-06-01

Unsteady aerodynamics modeling of civil transport configuration under extreme flight conditions

  • CEN Fei ,
  • LIU Zhitao ,
  • JIANG Yong ,
  • GUO Tianhao ,
  • ZHANG Lei ,
  • KONG Yinan
Expand
  • 1. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-03-29

  Revised date: 2021-06-02

  Online published: 2021-06-01

摘要

飞行失控是造成民机灾难性航空事故的重要因素,飞行失控中飞机难以避免超出正常飞行包线范围,进入具有复杂非线性和非定常动态气动特性的极限飞行状态。选择具有布局典型性的CRM民机标模,开展极限飞行状态大振幅振荡测力试验,获得极限飞行状态非定常气动力数据;基于大迎角流动分离物理机理和Goman状态空间建模方法,提出了针对大型民机极限飞行状态的非定常气动力模型并验证了模型的泛化能力;将非定常气动力模型与飞机运动方程结合,形成非定常气动力/非线性运动状态方程组,进行气动/运动耦合分岔分析,预测了极限飞行状态飞机非线性运动,最后利用风洞模型飞行试验进行极限飞行状态动力学特性验证。结果表明,在民机非定常气动力建模中,改进状态空间模型结构,针对机翼和平尾,分别引入反映其空间流场特征的状态变量,改进后的模型实现了民机纵向非定常气动力建模,尤其是解决了俯仰力矩非定常建模问题,模型具有良好的泛化能力;结合非定常气动力模型和飞机运动方程进行的极限飞行状态非线性运动分岔分析,可以准确预测极限环振荡等非线性运动;通过风洞模型飞行试验,准确复现和验证了极限飞行状态飞行动力学特性的发展演化,实现了非定常气动力建模和非线性飞行动力学分析结果的试验验证。研究方法和结果为民机极限飞行状态的气动与运动特性的建模分析提供了一个可行途径,从而改进飞机飞行失控预防、极限状态改出、飞行模拟训练和飞行事故分析等。

本文引用格式

岑飞 , 刘志涛 , 蒋永 , 郭天豪 , 张磊 , 孔轶男 . 民机极限飞行状态非定常气动力建模[J]. 航空学报, 2022 , 43(8) : 125582 -125582 . DOI: 10.7527/S1000-6893.2021.25582

Abstract

Loss of control is an important factor causing catastrophic aviation accidents, and may lead to extreme flight conditions with complex nonlinear and unsteady aerodynamic characteristics beyond the normal flight envelope. The CRM civil aircraft is selected in this study to conduct a large amplitude oscillation force measurement experiment under extreme flight conditions, and the unsteady aerodynamic data of the aircraft are obtained. Based on the physical mechanism of flow separation at a high angle of attack and the method of Goman state-space model, the structure of the unsteady aerodynamic model for large civil aircraft under extreme flight conditions is proposed, and the predicted ability of the model is verified. The unsteady aerodynamic model is combined with the aircraft motion equations to form the flow/motion state equations. Analysis of the aerodynamic/motion coupling bifurcation is then conducted to predict the evolution characteristics of the aircraft flight motion under the extreme flight condition. The dynamic characteristics are verified by the wind tunnel model flight experiment. The results show that the structure of the unsteady aerodynamic model can be improved by dividing the state variables reflecting the flow field characteristics of the wing and the horizontal tail, respectively. The improved model can accurately capture the longitudinal unsteady aerodynamic characteristics of civil aircraft, and particularly solve the problem of unsteady modeling of the pitch moment. The bifurcation analysis of nonlinear motions such as the limit cycle oscillation under extreme flight conditions can be accurately predicted; the development and evolution of flight dynamics characteristics under the extreme flight condition can be accurately reproduced and verified through the wind tunnel model flight experiment, thereby providing controlled and repeatable experimental conditions for unsteady aerodynamic modeling and verification of nonlinear flight dynamics analysis results. The research methods and results provide a feasible approach to the study of aerodynamic and kinematic characteristics of civil aircraft under extreme flight conditions, so as to improve the prevention and recovery from loss of control, pilot training with flight simulation and flight accident analysis.

参考文献

[1] Boeing Aviation Safety Group. Statistical summary of commercial jet airplane accidents, worldwide operations, 1959-2017[EB/OL]. (2020-10-31)[2021-03-01]. http://www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/statsum.pdf.
[2] 中国民用航空局标准司. 航空器驾驶员训练指南-复杂状态预防和改出训练(UPRT): AC-91-FS-2015-30[R].北京:中国民用航空局, 2015. Standards Department of CAAC. Pilot training guide-upset prevention and recovery training(UPRT): AC-91-FS-2015-30[R]. Beijing: CAAC, 2015(in Chinese).
[3] Federal Aviation Administration. Upset prevention and recovery training: FAA AC 120-111[R]. Washington, D.C.: FAA, 2015.
[4] ABRAMOV N, GOMAN M, KHRABROY A E, et al. Aerodynamic model of transport airplane in extended envelope for simulation of upset recovery[C]//28th International Congress of the Aeronautical Sciences, 2012.
[5] Industry Airplane Upset Recovery Training Aid Team. Airplane upset recovery training aid, Revision2[M]. Virginia: Flight Safety Foundation, 2008: 368-379.
[6] 伍开元. 民机空难相关非定常气动力问题研究[J]. 流体力学实验与测量, 2003, 17(2): 1-9. WU K Y. Unsteady aerodynamics in fatal accidents[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(2): 1-9 (in Chinese).
[7] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8): 2331-2347. WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347 (in Chinese).
[8] ABZUG M J. Airplane stability and control[M]. Cambridge: Cambridge University Press, 1977: 108-121.
[9] ETKIN B, REID L D. Dynamics of atmospheric flight: stability and control[M]. New York: John Wiley& Sons, Inc., 1972: 264-293.
[10] TOBAK M, SCHIFF L B. Aerodynamic mathematical modelling-Basic concepts: AGARD LS-114[R]. Washington,D.C.:AGARD,1981.
[11] GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115.
[12] 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4): 391-398. WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4): 391-398 (in Chinese).
[13] ABRAMOV N, GOMAN M, KHRABROV A. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2004.
[14] HUANG X Z. Nonlinear indicial response and internal state-space representation and its applications on delta wing aerodynamics[C]//21 st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003.
[15] PASHILKAR A. Flight dynamic analysis of the flow incidence rate model[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
[16] ROKHSAZ K, STECK J E. Use of neural networks in control of high-alpha maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5): 934-939.
[17] WANG Q, HE K F, QIAN W Q, et al. Unsteady aerodynamics modeling for flight dynamics application[J]. Acta Mechanica Sinica, 2012, 28(1): 14-23.
[18] 龚正, 沈宏良. 非定常气动力的结构自适应神经网络建模方法[J]. 飞行力学, 2007, 25(4): 13-16. GONG Z, SHEN H L. Structure self-adapting ANN method in modeling of unsteady aerodynamics[J]. Flight Dynamics, 2007, 25(4): 13-16 (in Chinese).
[19] WANG Z J, LAN C, BRANDON J. Fuzzy logic modeling of nonlinear unsteady aerodynamics[C]//23rd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1998.
[20] WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3): 659-668.
[21] KLEIN V, MURPHY P C, CURRY T J, et al. Analysis of wind tunnel longitudinal static and oscillatory data of the F-16XL aircraft: NASA Tm-97-206276[R]. Washington, D.C.: NASA,1997.
[22] SMITH M S. Analysis of wind tunnel oscillatory data of the X-31A aircraft: NASA CR-1999-208725[R]. Washington, D.C.: NASA, 1999.
[23] 汪清, 何开锋, 钱炜祺, 等. 飞机大攻角空间机动气动力建模研究[J]. 航空学报, 2004, 25(5): 447-450. WANG Q, HE K F, QIAN W Q, et al. Aerodynamic modeling of spatial maneuvering aircraft at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5): 447-450 (in Chinese).
[24] GOMAN M G, KHRABROV A N, USOLTSEY S P. Analysis of wind tunnel oscillatory data of the X-31A aircraft[C]//The Inernational Federation of Automatic Control, 11th IFAC Symposium on System Identification. Kitakyushu: IFAC, 1997: 399-404.
[25] BRANDON J, FOSTER J, SHAH G, et al. Comparison of rolling moment characteristics during roll oscillations for a low and a high aspect ratio configuration[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2004.
[26] ABRAMOV N, GOMAN M, KHRABROV A, et al. Pushing ahead -SUPRA airplane model for upset recovery[C]//AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2012.
[27] ABRAMOV N B, GOMAN M G, KHRABROV A N, et al. Aerodynamic modeling for poststall flight simulation of a transport airplane[J]. Journal of Aircraft, 2019, 56(4): 1427-1440.
[28] RIVERS M. Common research model [EB/OL]. (2012-02-10)[2018-10-10].https://commonresearchmodel.larc.nasa.gov/geomet.
[29] ATINAULT O, HUE D. Design of a vertical tail for the CRM configuration: RT 1/21960 GMT/DAAP[R]. Châillon Cedex: ONERA, 2014.
[30] VASSBERG J, DEHAAN M, RIVERS M, et al. Development of a common research model for applied CFD validation studies[C]//26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008.
[31] 岑飞, 李清, 刘志涛, 等. 民机极限飞行状态的动态气动力试验与建模[J]. 航空学报, 2020, 41(8): 123664. CEN F, LI Q, LIU Z T, et al. Unsteady aerodynamics test and modeling of civil aircraft under extreme flight conditions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123664 (in Chinese).
[32] GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115.
[33] FAN Y, LUTZE E H. Identification of an unsteady aerodynamic model up to high angle of attack regime: AIAA-1996-3407[R].Reston: AIAA,1996.
[34] LUCHTENBURG D M, ROWLEY C W, LOHRY M W, et al. Unsteady high-angle-of-attack aerodynamic models of a generic jet transport[J]. Journal of Aircraft, 2015, 52(3): 890-895.
[35] PATTINSON J, LOWENBERG M H, GOMAN M G. Investigation of poststall pitch oscillations of an aircraft wind-tunnel model[J]. Journal of Aircraft, 2013, 50(6): 1843-1855.
[36] KWATNY H G, DONGMO J E T, CHANG B C, et al. Nonlinear analysis of aircraft loss of control[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(1): 149-162.
[37] DONGMO J E. Aircraft stall recovery using nonlinear smooth feedback regulators with inputs constraints[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2011.
[38] PAUCK S, ENGELBRECHT J. Bifurcation analysis of the generic transport model with a view to upset recovery[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2012.
[39] GILL S J, LOWENBERG M H, NEILD S A, et al. Upset dynamics of an airliner model: a nonlinear bifurcation analysis[J]. Journal of Aircraft, 2013, 50(6): 1832-1842.
[40] 岑飞, 聂博文, 刘志涛, 等. 面向先进战斗机研制的风洞模型飞行试验技术[J]. 航空学报, 2020, 41(6): 523444. CEN F, NIE B W, LIU Z T, et al. Wind tunnel model flight test technique for advanced fighter aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523444 (in Chinese).
[41] CEN F, LI Q, LIU Z T, et al. Post-stall flight dynamics of commercial transport aircraft configuration: a nonlinear bifurcation analysis and validation[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(3): 368-384.
文章导航

/