固体力学与飞行器总体设计

基于随机森林的飞行载荷代理模型分析方法

  • 李海泉 ,
  • 陈小前 ,
  • 左林玄 ,
  • 赵卓林
展开
  • 1. 国防科技大学 空天科学学院, 长沙 410073;
    2. 中国航空工业集团有限公司 沈阳飞机设计研究所, 沈阳 110035;
    3. 中国人民解放军军事科学院 国防科技创新研究院, 北京 100071

收稿日期: 2021-05-14

  修回日期: 2021-05-14

  网络出版日期: 2021-06-01

基金资助

国家自然科学基金(61903349)

Surrogate model for flight load analysis based on random forest

  • LI Haiquan ,
  • CHEN Xiaoqian ,
  • ZUO Linxuan ,
  • ZHAO Zhuolin
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. Shenyang Aircraft Design Institute, Aviation Industry Corporation of China, Shenyang 110035, China;
    3. National Innovation Institute of Defense Technology, Chinese Academy of Military Science, Beijing 100071, China

Received date: 2021-05-14

  Revised date: 2021-05-14

  Online published: 2021-06-01

Supported by

National Natural Science Foundation of China (61903349)

摘要

飞行载荷分析(FLC)通常需消耗大量的计算资源和时间,提升飞行载荷计算效率对于缩短研发周期、提高设计质量具有重要意义。本文研究了数据驱动的机器学习代理模型飞行载荷分析方法,由于随机森林(RF)代理模型具有学习效率较高、泛化能力较强、可避免过拟合、参数可解释、变量敏感度分析等优点,使其十分切合飞行载荷分析,具有重要的应用潜力和前景。文中基于传统的飞行载荷分析方法,采用NASTRAN的SQL144载荷分析框架获得训练随机森林代理模型的样本数据,然后以高度、马赫数、过载、俯仰角加速度等作为输入参数构建了飞机对称机动载荷预测代理模型。采用建立的模型预测了算例飞机其他工况机翼翼根、平尾翼根的剪力、弯矩、扭矩,通过对预测结果评估校验,证实了模型具有较高的精度,可以大幅提升飞行载荷分析效率,并能够分析飞行载荷对各状态参数的敏感度,为高效全面地分析飞行载荷提供了新的思路。

本文引用格式

李海泉 , 陈小前 , 左林玄 , 赵卓林 . 基于随机森林的飞行载荷代理模型分析方法[J]. 航空学报, 2022 , 43(3) : 225640 -225640 . DOI: 10.7527/S1000-6893.2021.25640

Abstract

Flight Load Computation (FLC) consumes considerable computational time and resources, and promoting FLC efficiency is highly significant to shorten the development cycle and improve the design quality of aircraft. This paper focuses on a data-driven machine learning surrogate model for load analysis based on the Random Forest (RF), which fits the load analysis with important potential and application prospect in this field because of its advantages such as high learning efficiency, strong generalization ability, overfitting avoidance, parameter interpretability, and variable sensitivity analysis. The training data for the RF surrogate model using conventional load analysis methods and the SQL144 framework of NASTRAN are generated, and parameters such as height, Mach number, overload, and pitch angular acceleration serve as the input variables to establish the surrogate model of load prediction in the case of symmetric maneuver. The proposed model is used to predict other conditions and the shear force, bending moment, and torque of roots of wings and horizontal tail. The predicting results are evaluated and verified, demonstrating high accuracy of the RF surrogate model and its ability to drastically promote the FLC efficiency and conduct sensitivity analysis of the flight load to state parameters. This study provides a new approach to the efficient and comprehensive flight load analysis.

参考文献

[1] MOHAMED K S. Machine learning for model order reduction[M]. Berlin:Springer International Publishing, 2018.
[2] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge:MIT Press, 2016:3-6.
[3] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:770-778.
[4] KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814:1-4.
[5] LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166.
[6] 张天姣, 钱炜祺, 周宇, 等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展, 2019, 10(1):1-11. ZHANG T J, QIAN W Q, ZHOU Y, et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1):1-11(in Chinese).
[7] 王博斌, 张伟伟, 叶正寅. 基于神经网络模型的动态非线性气动力辨识方法[J]. 航空学报, 2010, 31(7):1379-1388. WANG B B, ZHANG W W, YE Z Y. Unsteady nonlinear aerodynamics identification based on neural network model[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1379-1388(in Chinese).
[8] 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4):524736. YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neuralnetwork based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524736(in Chinese).
[9] SUN Z W, WANG C, ZHENG Y, et al. Non-intrusive reduced-order model for predicting transonic flow with varying geometries[J]. Chinese Journal of Aeronautics, 2020, 33(2):508-519.
[10] GOU Y Y, LI H B, DONG X M, et al. Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities[J]. Chinese Journal of Aeronautics, 2017, 30(2):796-806.
[11] SECCO N R, DE MATTOS B S. Artificial neural networks to predict aerodynamic coefficients of transport airplanes[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(2):211-230.
[12] 史志伟, 明晓. 基于模糊聚类的模糊神经网络在非定常气动力建模中的应用[J]. 空气动力学学报, 2005, 23(1):21-24. SHI Z W, MING X. The application of FNN in unsteady aerodynamics modeling based on fuzzy clustering[J]. Acta Aerodynamica Sinica, 2005, 23(1):21-24(in Chinese).
[13] 何磊, 钱炜祺, 汪清, 等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报, 2019, 37(3):470-479. HE L, QIAN W Q, WANG Q, et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3):470-479(in Chinese).
[14] WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3):659-668.
[15] IGNATYEV D, KHRABROV A. Experimental study and neural network modeling of aerodynamic characteristics of canard aircraft at high angles of attack[J]. Aerospace, 2018, 5(1):26.
[16] IGNATYEV D I, KHRABROV A N. Neural network modeling of unsteady aerodynamic characteristics at high angles of attack[J]. Aerospace Science and Technology, 2015, 41:106-115.
[17] LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166.
[18] HOLMES G, SARTOR P, REED S, et al. Prediction of landing gear loads using machine learning techniques[J]. Structural Health Monitoring, 2016, 15(5):568-582.
[19] JEONG S H, LEE K B, HAM J H, et al. Estimation of maximum strains and loads in aircraft landing using artificial neural network[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(1):117-132.
[20] HALLE M, THIELECKE F. Local Model Networks applied to Flight Loads Estimation[C]//31st Congress of the International Council of the Aeronautical Sciences (ICAS), 2018.
[21] ALLEN M J, DIBLEY R P. Modeling aircraft wing loads from flight data using neural networks[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale:SAE International, 2003.
[22] COOPER S B, DIMAIO D. Static load estimation using artificial neural network:Application on a wing rib[J]. Advances in Engineering Software, 2018, 125:113-125.
[23] 赵永辉. 气动弹性力学与控制[M]. 北京:科学出版社, 2007:267-283. ZHAO Y H. Aeroelasticity and control[M]. Beijing:Science Press, 2007:267-283(in Chinese).
[24] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45:5-32.
文章导航

/