电子电气工程与控制

基于FCM的多无人机协同攻击决策建模方法

  • 陈军 ,
  • 梁晶 ,
  • 程龙 ,
  • 佟龑
展开
  • 1. 西北工业大学 电子信息学院, 西安 710072;
    2. 空军工程大学 信息与导航学院, 西安 710077

收稿日期: 2021-03-18

  修回日期: 2021-06-11

  网络出版日期: 2021-06-01

基金资助

国家自然科学基金(61305133);航空科学基金(2020Z023053002)

Cooperative attack decision modeling method of multiple UAVs based on FCM

  • CHEN Jun ,
  • LIANG Jing ,
  • CHENG Long ,
  • TONG Yan
Expand
  • 1. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Information and Navigation, Air Force Engineering University, Xi'an 710077, China

Received date: 2021-03-18

  Revised date: 2021-06-11

  Online published: 2021-06-01

Supported by

National Natural Science Foundation of China (61305133); Aeronautical Science Foundation of China(2020Z023053002)

摘要

针对复杂不确定战场环境下多无人机协同任务的需求,提出了一种基于模糊认知图(FCM)及其扩展模型的多无人机协同攻击决策建模方法。基于人的决策心智模式,采用智能体模糊认知图(ABFCM)建立了包含感性和理性2种决策模式的多无人机协同攻击决策系统模型框架。采用模糊灰色认知图(FGCM)对多无人机的态势感知和协同攻击决策开展了建模工作。借鉴人脑杏仁核机理建立了态势-决策模板快速匹配的感性攻击决策模型。为降低建模工作对专家知识的依赖,采用直觉模糊集的决策阈值算法提高理性攻击决策模型的客观性,并采用动量梯度下降(MGD)学习算法进一步提高了决策模型的学习进化能力。通过仿真验证分析表明,基于FCM的多无人机协同攻击决策建模方法能够较好地应对复杂不确定战场环境,发挥知识和数据在建模中的综合作用,可为提升多无人机执行任务的决策优势提供理论指导和建模方法参考。

本文引用格式

陈军 , 梁晶 , 程龙 , 佟龑 . 基于FCM的多无人机协同攻击决策建模方法[J]. 航空学报, 2022 , 43(7) : 325526 -325526 . DOI: 10.7527/S1000-6893.2021.25526

Abstract

According to the requirements for multi-UAV cooperative mission in the complex and uncertain battlefield environment, a decision-making modeling method of multi-UAV cooperative attack based on the Fuzzy Cognitive Map (FCM) and its extended model are proposed. Based on the human decision-making mental model, the model framework of the multi-UAV cooperative attack decision-making system including the perceptual and rational decision-making modes is established by using the Agent-Based Fuzzy Cognitive Map (ABFCM). The Fuzzy Grey Cognitive Map (FGCM) is used to model the situation awareness and cooperative attack decision of multi-UAVs. Based on the amygdala mechanism of human brain, a perceptual attack decision model for quick matching of situation and decision template is established. To reduce the dependence of modeling work on expert knowledge, a rational attack decision model is established based on the decision threshold algorithm of intuitionistic fuzzy sets, and the learning and evolution ability of the decision model is further improved by using the Momentum Gradient Descent (MGD) learning algorithm. The simulation results show that the method proposed can better cope with the complex and uncertain battlefield environment, give full play to the comprehensive role of knowledge and data in modeling, and provide theoretical and modeling guidance for improving the decision-making advantages in mission execution by multi-UAVs.

参考文献

[1] Defense Advanced Research Projects Agency (DARPA). System of systems integration technology and experimentation (SoSITE):DARPA-BAA-14-40[R]. Washington, D.C.:BAA, 2014.
[2] LUMMUS R. Mission battle management system fighter engagement manager concept[C]//AIAA International Air and Space Symposium and Exposition:The Next 100 Years. Reston:AIAA, 2003:2857.
[3] 牛轶峰,沈林成,李杰,等.无人-有人机协同控制关键问题[J].中国科学:信息科学, 2019, 49(5):538-554. NIU Y F, SHEN L C, LI J, et al. Key scientific problems in cooperation control of unmanned-manned aircraft systems[J]. Scientia Sinica (Informationis), 2019, 49(5):538-554(in Chinese).
[4] 傅莉,谢福怀,孟光磊,等.基于滚动时域的无人机空战决策专家系统[J].北京航空航天大学学报, 2015, 41(11):1994-1999. FU L, XIE F H, MENG G L, et al. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):1994-1999(in Chinese).
[5] 孟光磊,罗元强,梁宵,等.基于动态贝叶斯网络的空战决策方法[J].指挥控制与仿真, 2017, 39(3):49-54. MENG G L, LUO Y Q, LIANG X, et al. Air combat decision-making method based on dynamic Bayesian network[J]. Command Control&Simulation, 2017, 39(3):49-54(in Chinese).
[6] PARK H, LEE B Y, TAHK M J, et al. Differential game based air combat maneuver generation using scoring function matrix[J]. International Journal of Aeronautical and Space Sciences, 2016, 17(2):204-213.
[7] 孙楚,赵辉,王渊,等.基于强化学习的无人机自主机动决策方法[J].火力与指挥控制, 2019, 44(4):142-149. SUN C, ZHAO H, WANG Y, et al. UCAV autonomic maneuver decision-making method based on reinforcement learning[J]. Fire Control&Command Control, 2019, 44(4):142-149(in Chinese).
[8] 左家亮,杨任农,张滢,等.基于启发式强化学习的空战机动智能决策[J].航空学报, 2017, 38(10):321168. ZUO J L, YANG R N, ZHANG Y, et al. Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):321168(in Chinese).
[9] CHEN X, WANG Y F. Study on multi-UAV air combat game based on fuzzy strategy[J]. Applied Mechanics and Materials, 2014, 494-495:1102-1105.
[10] 祁圣君,井立,王亚龙.无人机系统及发展趋势综述[J].飞航导弹,2018(4):17-21. QI S J, JING L, WANG Y L. Overview of UAV system and its development trend[J]. Aerodynamic Missile Journal, 2018(4):17-21(in Chinese).
[11] 陈灿,莫雳,郑多,等.非对称机动能力多无人机智能协同攻防对抗[J].航空学报, 2020, 41(12):324152. CHEN C, MO L, ZHENG D, et al. Cooperative attack-defense game of multiple UAVs with asymmetric maneuverability[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):324152(in Chinese).
[12] ZHEN Z Y, XING D J, GAO C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm[J]. Aerospace Science and Technology, 2018, 76:402-411.
[13] XU J W, DENG Z H, SONG Q, et al. Multi-UAV counter-game model based on uncertain information[J]. Applied Mathematics and Computation, 2020, 366:124684.
[14] XIE R Z, LI J Y, LUO D L. Research on maneuvering decisions for multi-UAVs Air combat[C]//11th IEEE International Conference on Control&Automation. Piscataway:IEEE Press, 2014:767-772.
[15] 张楠,吴文海,周思羽,等.群决策理论在多机协同空战机动决策中的应用[J].指挥控制与仿真, 2013, 35(1):23-26. ZHANG N, WU W H, ZHOU S Y, et al. Application of group-decision-making in maneuvering decision making of multi-fighter cooperative air combat[J]. Command Control&Simulation, 2013, 35(1):23-26(in Chinese).
[16] 陈侠,魏晓明,徐光延.多无人机模糊态势的分布式协同空战决策[J].上海交通大学学报, 2014, 48(7):907-913, 921. CHEN X, WEI X M, XU G Y. Multiple unmanned aerial vehicle decentralized cooperative air combat decision making with fuzzy situation[J]. Journal of Shanghai Jiao Tong University, 2014, 48(7):907-913, 921(in Chinese).
[17] PAPAGEORGIOU E.I. Review study on fuzzy cognitive maps and their applications during the last decade[M]. Berlin:Springer, 2013.
[18] ADAMS J A. Unmanned vehicle situation awareness:A path forward[C]//Proceedings of the 2007 Human Systems Integration Symposium, 2007.
[19] JONES R E T, CONNORS E S, MOSSEY M E, et al. Using fuzzy cognitive mapping techniques to model situation awareness for army infantry platoon leaders[J]. Computational and Mathematical Organization Theory, 2011, 17(3):272-295.
[20] 陈军,张新伟,徐嘉,等.有人/无人机混合编队有限干预式协同决策[J].航空学报, 2015, 36(11):3652-3665. CHEN J, ZHANG X W, XU J, et al. Human/unmanned-aerial-vehicle team collaborative decision-making with limited intervention[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3652-3665(in Chinese).
[21] ZHAO Z, NIU Y F. Situation-driven fuzzy cognitive maps applied in air-to-ground target attack[C]//201729th Chinese Control and Decision Conference (CCDC). Piscataway:IEEE Press, 2017:6384-6389.
[22] 陈军,徐嘉,高晓光.基于ABFCM模型框架的UCAV自主攻击决策[J].系统工程与电子技术, 2017, 39(3):549-556. CHEN J, XU J, GAO X G. Autonomous attack decision-making of UCAV based on ABFCM model framework[J]. Systems Engineering and Electronics, 2017, 39(3):549-556(in Chinese).
[23] ZHAO Z, NIU Y F, SHEN L C. Adaptive level of autonomy for human-UAVs collaborative surveillance using situated fuzzy cognitive maps[J]. Chinese Journal of Aeronautics, 2020, 33(11):2835-2850.
[24] ENDSLEY M, JONES W M. Situation awareness information dominance&information warfare[R]. United States Air Force Armstrong Laboratory, 1997.
[25] 孔勇,孟祥忠,王智,等.基于ADC模型的天波超视距雷达作战效能评估[J].火控雷达技术, 2005, 34(3):77-79, 83. KONG Y, MENG X Z, WANG Z, et al. Combat efficiency evaluation for sky wave over-the-horizon radar based on ADC modeling[J]. Fire Control Radar Technology, 2005, 34(3):77-79, 83(in Chinese).
[26] 徐嘉.基于FCM模型理论的无人作战飞机对地自主攻击决策[D].西安:西北工业大学, 2017. XU J. Air-to-surface autonomous attack decision-making of UCAV based on FCM[D]. Xi'an:Northwestern Polytechnical University, 2017(in Chinese).
[27] 薛羽,庄毅,张友益,等.基于启发式自适应离散差分进化算法的多UCAV协同干扰空战决策[J].航空学报, 2013, 34(2):343-351. XUE Y, ZHUANG Y, ZHANG Y Y, et al. Multiple UCAV cooperative jamming air combat decision making based on heuristic self-adaptive discrete differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):343-351(in Chinese).
[28] 奚之飞,徐安,寇英信,等.基于PCA-MPSO-ELM的空战目标威胁评估[J].航空学报, 2020, 41(9):323895. XI Z F, XU A, KOU Y X, et al. Target threat assessment in air combat based on PCA-MPSO-ELM algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):323895(in Chinese).
[29] 屈高敏,董彦非,岳源.对地攻击型无人机作战效能评估[J].火力与指挥控制, 2016, 41(4):145-149. QU G M, DONG Y F, YUE Y. Operational effectiveness evaluation of ground attack UCAV[J]. Fire Control&Command Control, 2016, 41(4):145-149(in Chinese).
[30] 张堃,王雪,张才坤,等.基于IFE动态直觉模糊法的空战目标威胁评估[J].系统工程与电子技术, 2014, 36(4):697-701. ZHANG K, WANG X, ZHANG C K, et al. Evaluating and sequencing of air target threat based on IFE and dynamic intuitionistic fuzzy sets[J]. Systems Engineering and Electronics, 2014, 36(4):697-701(in Chinese).
[31] ZHANG K, KONG W R, LIU P P, et al. Assessment and sequencing of air target threat based on intuitionistic fuzzy entropy and dynamic VIKOR[J]. Journal of Systems Engineering and Electronics, 2018, 29(2):305-310.
[32] AZAM N, ZHANG Y, YAO J T. Evaluation functions and decision conditions of three-way decisions with game-theoretic rough sets[J]. European Journal of Operational Research, 2017, 261(2):704-714.
文章导航

/