国家数值风洞(NNW)进展及应用专栏

NNW-FSI软件静气动弹性耦合加速策略设计与实现

  • 孙岩 ,
  • 王昊 ,
  • 江盟 ,
  • 岳皓 ,
  • 孟德虹
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2021-03-30

  修回日期: 2021-04-29

  网络出版日期: 2021-05-26

基金资助

国家数值风洞工程;国家重点研究发展计划(2020YFB1506701)

Design and implementation of coupling acceleration strategy in static aeroelastic module of NNW-FSI software

  • SUN Yan ,
  • WANG Hao ,
  • JIANG Meng ,
  • YUE Hao ,
  • MENG Dehong
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-03-30

  Revised date: 2021-04-29

  Online published: 2021-05-26

Supported by

National Numerical Windtunnel Project;National Key R&D Program of China (2020YFB1506701)

摘要

在国家数值风洞(NNW)工程的资助下,依托NNW-FSI流固耦合模拟软件平台,从气动载荷作用下飞行器结构静变形大小与收敛过程无关的物理机制出发,基于变形增量叠加的方式,设计和实现了一种静气动弹性耦合加速策略,通过松弛因子对耦合迭代的收敛过程进行调整。结合超大展弦比无人机和CHN-T1模型两种不同外形,开展了不同松弛因子下的静气动弹性耦合数值模拟,对耦合加速策略的参数影响和加速效果进行了测试和评估。从计算误差控制角度对松弛因子加速耦合迭代收敛的作用机制进行了理论分析,弄清3种类型静气动弹性耦合模拟过程中松弛因子发挥的作用,并给出了松弛因子选取范围的建议。静气动弹性耦合模拟和理论分析结果表明,针对不同类型的静气动弹性耦合问题,选取合适的松弛因子,能够达到抑制振荡并加速收敛的效果。

本文引用格式

孙岩 , 王昊 , 江盟 , 岳皓 , 孟德虹 . NNW-FSI软件静气动弹性耦合加速策略设计与实现[J]. 航空学报, 2021 , 42(9) : 625738 -625738 . DOI: 10.7527/S1000-6893.2021.25738

Abstract

A coupling acceleration strategy was designed and implemented in the static aeroelastic module of the fluid-structure interaction software platform, NNW-FSI, with the support of the National Numerical Windtunnel (NNW) Project. The strategy was achieved based on a scheme of deformation increment superposition and used the relaxation factor to adjust the convergence process, inspired by the fact that the static structure deformation of aircraft under aerodynamic loads is independent of the convergence process. Then the parameter influence and acceleration effect of the strategy were tested and evaluated through the static aeroelastic simulation of the ultra-high respect-ratio unmanned aerial vehicle and the CHN-T1 model with different values of the relaxation factor. Finally, the effect of the relaxation factor in three types of static aeroelastic coupling simulation was clarified based on the theoretical analysis of the acceleration mechanism from the perspective of computational error control, and suggestions for the selection of the relaxation factor value were also given. Both the static aeroelastic simulation results and the theoretical analysis demonstrate that an appropriate selection of the relaxation factor value can suppress oscillation and accelerate convergence for a special type of static aeroelastic simulation problem.

参考文献

[1] PARENTEAU M. Aerodynamic optimization of aircraft wings using a coupled VLM-2.5D RANS approach[D]. Montréa:École Polytechnique de Montréal, 2017.
[2] PIPERNI P, DEBLOIS A, HENDERSON R. Development of a multilevel multidisciplinary-optimization capability for an industrial environment[J]. AIAA Journal, 2013, 51(10):2335-2352.
[3] FRANCIOLINI M, DA RONCH A, DROFELNIK J, et al. Efficient infinite-swept wing solver for steady and unsteady compressible flows[J]. Aerospace Science and Technology, 2018, 72:217-229.
[4] 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1):244-254. ZHANG M, LIU T J, MA T L,et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):244-254(in Chinese).
[5] PARENTEAU M, LAURENDEAU É, CARRIER G. Combined high-speed and high-lift wing aerodynamic optimization using a coupled VLM-2.5D RANS approach[J]. Aerospace Science and Technology, 2018, 76:484-496.
[6] RIZZI A. Modeling & simulating aircraft stability & control-SimSAC project[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2010.
[7] 陈大伟, 杨国伟. 静气动弹性计算方法研究[J]. 力学学报, 2009, 41(4):469-479. CHEN D W, YANG G W. Static aeroelastic analysis of a flying-wing using different models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4):469-479(in Chinese).
[8] 张强, 祝小平, 周洲, 等. 基于CFD/CSD耦合的连结翼静气动弹性计算研究[J]. 西北工业大学学报, 2016, 34(3):437-442. ZHANG Q, ZHU X P, ZHOU Z,et al. Numerical research on static aeroelasticity of joined wing based on CFD/CSD coupling[J]. Journal of Northwestern Polytechnical University, 2016, 34(3):437-442(in Chinese).
[9] SANCHEZ R, KLINE H L, THOMAS D, et al. Assessment of the fluid-structure interaction capabilities for aeronautical applications of the open-source solver SU2[C]//Greece:VII European Congress on Computational Methods in Applied Sciences and Engineering, 2016:1498-1529.
[10] 孙岩, 黄勇, 王运涛, 等. TRIP软件的静气动弹性计算模块开发及精度验证[J]. 空气动力学学报, 2017, 35(5):620-624. SUN Y, HUANG Y, WANG Y T, et al. Development and precision validation of static aeroelastic computational module on flow solver TRIP[J]. Acta Aerodynamica Sinica, 2017, 35(5):620-624(in Chinese).
[11] 王运涛, 孟德虹, 孙岩, 等. 超大规模气动弹性数值模拟软件研制(2017)[J]. 空气动力学学报, 2018, 36(6):1019-1026. WANG Y T, MENG D H, SUN Y, et al. Software development of ultra-scale numericalsimulaiton for aero-elastic problem(2017)[J]. Acta Aerodynamica Sinica, 2018, 36(6):1019-1026(in Chinese).
[12] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese).
[13] 孙岩, 江盟, 孟德虹, 等. 国家数值风洞工程结构网格变形程序SGDP V1.0开发与应用[J]. 空气动力学学报, 2020, 38(4):668-676. SUN Y, JIANG M, MENG D H,et al. Development and application of structured grid deformation program SGDP V1.0 in National Numerical Windtunnel Project[J]. Acta Aerodynamica Sinica, 2020, 38(4):668-676(in Chinese).
[14] MATTHIES H G, STEINDORF J. Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction[J]. Computers & Structures, 2002, 80(27-30):1991-1999.
[15] RENDALL T C S, ALLEN C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10):1519-1559.
[16] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249.
[17] 孙岩, 邓小刚, 王运涛, 等. RBFTFI结构动网格技术在风洞静气动弹性修正中的应用[J]. 工程力学, 2014, 31(10):228-233. SUN Y, DENG X G, WANG Y T, et al. Application of structural dynamic grid method based on RBFTFI on wind tunnel static aero-elastic modification[J]. Engineering Mechanics, 2014, 31(10):228-233(in Chinese).
[18] 孙岩, 邓小刚, 王光学, 等. 基于径向基函数改进的Delaunay图映射动网格方法[J]. 航空学报, 2014, 35(3):727-735. SUN Y, DENG X G, WANG G X, et al. Improvement on delaunay graph mapping dynamic grid method based on radial basis functions[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):727-735(in Chinese).
[19] 孙岩, 孟德虹, 王运涛, 等. 基于径向基函数与混合背景网格的动态网格变形方法[J]. 航空学报, 2016, 37(5):1462-1472. SUN Y, MENG D H, WANG Y T,et al. Dynamic grid deformation method based on radial basis function and hybrid background grid[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1462-1472(in Chinese).
[20] ALLEN C B, RENDALL T C. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions:AIAA-2007-3804[R]. Reston:AIAA, 2007.
[21] 王运涛, 孟德虹, 孙岩, 等. 带支撑装置的CRM-WBH模型流固耦合数值模拟[J]. 气体物理, 2019, 4(1):16-22. WANG Y T, MENG D H, SUN Y, et al. Fluid-structure-coupling simulation of CRM-WBH model with supportsystem[J]. Physics of Gases, 2019, 4(1):16-22(in Chinese).
[22] 王运涛, 孙岩, 孟德虹, 等. 包含支撑装置和机翼变形的CRM-WB构型气动特性数值模拟[J]. 航空学报, 2017, 38(10):121202. WANG Y T, SUN Y, MENG D H,et al. Numerical simulation of aerodynamic characteristics of CRM-WB configuration with support system and wing deformation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121202(in Chinese).
[23] 张书俊, 王运涛, 孟德虹. 大展弦比联接翼静气动弹性研究[J]. 空气动力学学报, 2013, 31(2):170-174. ZHANG S J, WANG Y T, MENG D H. Study on staticaeroelasticity for high aspect ratio joined-wings[J]. Acta Aerodynamica Sinica, 2013, 31(2):170-174(in Chinese).
[24] 余永刚, 周铸, 黄江涛, 等. 单通道客机气动标模CHN-T1设计[J]. 空气动力学学报, 2018, 36(3):505-513. YU Y G, ZHOU Z, HUANG J T, et al. Aerodynamic design of a standard model CHN-T1 for single-aisle passenger aircraft[J]. Acta Aerodynamica Sinica, 2018, 36(3):505-513(in Chinese).
[25] 王运涛, 刘刚, 陈作斌. 第一届航空CFD可信度研讨会总结[J]. 空气动力学学报, 2019, 37(2):247-261, 246. WANG Y T, LIU G, CHEN Z B. Summary of the first aeronautical computational fluid dynamics credibility workshop[J]. Acta Aerodynamica Sinica, 2019, 37(2):247-261, 246(in Chinese).
文章导航

/