In the context of great power competition and drastic changes of international strategic environment, the discussion of the future development of carrier-based aircraft is brought to the focus of attention by changes of combat style, potential use demands and boosts of advanced technology. On the basis of analysis of the main driving factors of fixed-wing carrier-based aircraft development, the evolution paths of key technologies, such as taking-off, landing, integrated support and environmental adaptation, are depicted in this paper. Based on the research and judgment of future development of intelligent and UAV technology, the manned/unmanned cooperative operation, multi-domain cooperative operation and systematic development of carrier-based aeronautics are discussed. The main capabilities and technical characteristics of the next generation fixed-wing carrier-based aircraft are proposed.
[1] CONGRESSIONAL B O. The cost of replacing today's naval aviation fleet[EB/OL]. (2020-01-06)[2021-05-20]. www.cbo.gov/publication/55949.
[2] JERRY H. Retreat from range:The rise and fall of carrier aviation[EB/OL]. (2015-10-19)[2021-05-20].https://www.cnas.org/publications/reports/retreat-from-range-the-rise-and-fall-of-carrier-aviation.
[3] 洪伟宏, 王兵. 从技术特征和设计思想看航母划代[J]. 国防, 2009(10):78-81. HONG W H, WANG B. Research of aircraft carrier generation from the perspective of technical features and design principles[J]. National Defense, 2009(10):78-81(in Chinese).
[4] 匡兴华. 美国海军航母编队的作战能力分析[J]. 国防科技, 2009, 30(6):58-63. KUANG X H. A combat capability analysis of the US aircraft carrier fleet[J]. National Defense Science & Technology, 2009, 30(6):58-63(in Chinese).
[5] BRYAN C, ADAM L, PETER H, et al. Regaining the high ground at sea:Transforming the U.S. navy's carrier air wing for great power competition[EB/OL]. (2018-12-14)[2021-05-20]. https://csbaonline.org/research/publications/regaining-the-high-ground-at-sea-transforming-the-u.s.-navys-carrier-air-wi.
[6] MCCLURKEN J. Naval history and heritage command[J]. Journal of American History, 2015, 102(2):638.
[7] COHEN E A, FRIEDMAN N. Seapower and space:From the dawn of the missile age to net-centric warfare[J]. Foreign Affairs, 2001, 80(2):175.
[8] KAPURCH S J, RUSSELL S. Naval aviation vision:New challenges. enduring realities[J]. Naval Aviation News, 1997.
[9] 曲东才, 周胜明. 舰载机起飞技术研究[J]. 航空科学技术, 2004, 15(4):25-29. QU D C, ZHOU S M. Study of technologies of shipboard plane taking off[J]. Aeronautical Science and Technology, 2004, 15(4):25-29(in Chinese).
[10] 张勇, 周益. 美国舰载航空甲板运动准则[J]. 中国舰船研究, 2012, 7(1):7-11. ZHANG Y, ZHOU Y. Deck motion criteria for flight operations aboard USN aircraft carriers[J]. Chinese Journal of Ship Research, 2012, 7(1):7-11(in Chinese).
[11] 王豪. 国外舰载机滑跃起飞关键技术分析[J]. 教练机, 2018(3):27-30. WANG H. Analysis on the key technique of ski-jump takeoff of oversea carrier-based aircraft[J]. Trainer, 2018(3):27-30(in Chinese).
[12] 王俊彦. 舰载机弹射起飞技术的应用与发展[J]. 科技信息, 2009(23):430,566. WANG J Y. Application and development of carrier-based aircraft ejection take-off technology[J]. Science & Technology Information, 2009(23):430, 566(in Chinese).
[13] 王永庆, 罗云宝, 王奇涛, 等. 面向机舰适配的舰载飞机起降特性分析[J]. 航空学报, 2016, 37(1):269-277. WANG Y Q, LUO Y B, WANG Q T, et al. Carrier suitability-oriented launch and recovery characteristics of piloted carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):269-277(in Chinese).
[14] WALKER G P, FULLER J W, WURTH S P. F-35B integrated flight-propulsion control development[C]//2013 International Powered Lift Conference. Reston:AIAA, 2013.
[15] DENHAM J W. Project MAGIC CARPET: "Advanced controls and displays for precision carrier landings"[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[16] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2):020435. ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):020435(in Chinese).
[17] 杨一栋, 余俊雅. 舰载飞机着舰引导与控制[M]. 北京:国防工业出版社, 2006. YANG Y D, YU J Y. Carrier landing guidance and control of carrier-based aircraft[M].Beijing:National Defense Industry Press, 2006(in Chinese).
[18] COLIN B. X-47B head to sea[EB/OL]. Naval Aviation News (2013-02-04)[2021-05-21]. https://navalaviationnews.navylive.dodlive.mil/2013/02/04/x-47b-heads-to-sea.
[19] 石剑琛. 美国海军航母作战系统发展及展望[J]. 舰船科学技术, 2012, 34(4):132-135, 139. SHI J C. The development and prospect of US navy carrier combat system[J]. Ship Science and Technology, 2012, 34(4):132-135, 139(in Chinese).
[20] 李明. 国外航母作战系统发展研究[J]. 舰船电子工程, 2013, 33(5):6-9, 29. LI M. Development of foreign aircraft carrier combat system[J]. Ship Electronic Engineering, 2013, 33(5):6-9, 29(in Chinese).
[21] 屈也频, 金惠明, 何肇雄. 航母舰载机装备体系及指标论证方法[J]. 航空学报, 2018, 39(5):221675. QU Y P, JIN H M, HE Z X. Carrier-based aircraft equipment system-of-systems and index demonstration method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):221675(in Chinese).
[22] 杨放青. 航母飞行甲板作业能力分析与优化研究[D]. 哈尔滨:哈尔滨工程大学, 2018. YANG F Q. Analysis and optimization research on the aircraft carrier's flight deck's operational capability[D]. Harbin:Harbin Engineering University, 2018(in Chinese).
[23] 刘珏, 王能建, 罗旭, 等. 采用改进遗传算法的舰载机保障调度方法[J]. 国防科技大学学报, 2020, 42(2):194-205. LIU J, WANG N J, LUO X, et al. Deck operation scheduling method of carrier-based aircraft based on improved genetic algorithm[J]. Journal of National University of Defense Technology, 2020, 42(2):194-205(in Chinese).
[24] 葛超. 舰载机舰面保障调度算法研究[D]. 长春:吉林大学, 2020. GE C. Research on carrier aircraft deck support scheduling algorithm[D]. Changchun:Jilin University, 2020(in Chinese).
[25] 孙长友. 舰载机保障作业调度计划优化研究[D]. 哈尔滨:哈尔滨工程大学, 2016. SUN C Y. Research on the optimization of carrier-based aircraft security operation scheduling[D]. Harbin:Harbin Engineering University, 2016(in Chinese).
[26] 王永庆, 王光耀. 国外"轻重搭配"的战斗机装备发展模式分析[J]. 国际航空, 2012(11):54-57. WANG Y Q, WANG G Y. Performance and cost, the key factors for heavy and light fight collocation[J]. International Aviation, 2012(11):54-57(in Chinese).
[27] O'ROURKE R. Navy network-centric warfare concept:Key programs and issues for congress[C]//Congressional Research Service, 2004.
[28] MCCONNELL J H, JORDAN L L. Naval integrated fire control-counter air capability-based system of systems engineering[J]. Department of Defense, 2010, 30.
[29] ENGLAND G, CLARK V, JONES J L. Naval transformation roadmap:Power and access from the sea[R]. Office of the Chief of Naval Operations, 2004.
[30] BOARD N S. FORCEnet implementation strategy[M]. Washington, D.C.:National Academies Press, 2005.
[31] SENGLAUB M. Course of action analysis within an effects-based operational context[R]. Office of Scientific and Technical Information (OSTI), 2001.
[32] 孙聪, 王光耀, 张子军. 隐身技术对飞机作战效能影响研究[J]. 飞行力学, 2003, 21(1):5-7. SUN C, WANG G Y, ZHANG Z J. A research on effect of stealth technique on aircraft combat effectiveness[J]. Flight Dynamics, 2003, 21(1):5-7(in Chinese).