论文

先进舰载战斗机腐蚀防护控制与日历寿命设计

  • 陈跃良 ,
  • 陈亮 ,
  • 卞贵学 ,
  • 杨翔宁 ,
  • 管宇 ,
  • 张勇 ,
  • 何刚
展开
  • 1. 海军航空大学青岛校区, 青岛 266041;
    2. 大连理工大学, 大连 116024;
    3. 航空工业沈阳飞机设计研究所, 沈阳 110035

收稿日期: 2021-04-18

  修回日期: 2021-05-08

  网络出版日期: 2021-05-26

Corrosion protection control and calendar life design of advanced carrier-based aircraft

  • CHEN Yueliang ,
  • CHEN Liang ,
  • BIAN Guixue ,
  • YANG Xiangning ,
  • GUAN Yu ,
  • ZHANG Yong ,
  • HE Gang
Expand
  • 1. Qingdao Branch Naval Aviation University, Qingdao 266041, China;
    2. Dalian University of Technology, Dalian 116024, China;
    3. AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China

Received date: 2021-04-18

  Revised date: 2021-05-08

  Online published: 2021-05-26

摘要

舰载战斗机是航母编队战斗力的重要组成部分,但由于其复杂恶劣的服役环境,舰载机腐蚀防护控制与日历寿命设计问题已经成为限制海军航空兵战斗力保持与提升的关键难题。腐蚀防护与控制应贯穿舰载机全寿命周期,本文以此为总体思路,首先系统梳理了舰载机在综合设计、材料与涂料选择、制造与使用过程中腐蚀防护与控制的诸多要点与细节。然后针对舰载机日历寿命设计问题,在详述环境谱、加速谱编制原则、编制方法及基本构成的基础上,基于案例阐明腐蚀仿真技术是舰载机日历寿命设计的可靠高效手段,可为相关问题的后续研究提供创新思路。最后指出腐蚀监测是舰载机腐蚀防护控制过程中亟待解决的难题。

本文引用格式

陈跃良 , 陈亮 , 卞贵学 , 杨翔宁 , 管宇 , 张勇 , 何刚 . 先进舰载战斗机腐蚀防护控制与日历寿命设计[J]. 航空学报, 2021 , 42(8) : 525786 -525786 . DOI: 10.7527/S1000-6893.2021.25786

Abstract

Carrier-based aircraft is an important part of combat capability of aircraft carrier formation. However, due tothe complex and bad service environment, corrosion protection control and calendar life design of carrier-based aircraft have become the key problems limiting the maintenance and improvement of naval aviation combat effectiveness. Corrosion protection and control should run through the whole life cycle of carrier-based aircraft. Based on this general idea, the main points and details of corrosion protection and control in the process of comprehensive design, selection of materials and coatings, manufacture and use of carrier-based aircraft are systematically reviewed firstly in this paper. Then, aiming at the problem of carrier-based aircraft calendar life design, after elaborating the principles, methods and basic compositions of environment spectrum and acceleration spectrum, this paper illustrated that corrosion simulation technology is a reliable and efficient method for the design of carrier-borne aircraft calendar life based on two cases, and that this technology can also provide innovative ideas for the follow-up research of related problems. Finally, it is pointed out that corrosion monitoring is an urgent problem to be solved in the corrosion protection and control process of carrier-based aircraft.

参考文献

[1] 陈跃良. 海军飞机结构腐蚀控制及强度评估[M]. 北京:国防工业出版社, 2009:1-25. CHEN Y L. Corrosion control and strength evaluation of naval aircraft structure[M]. Beijing:National Defense Industry Press, 2009:1-25(in Chinese).
[2] 陈跃良, 张勇. 军用飞机结构日历寿命相关问题的思考[J]. 航空工程进展, 2010, 1(4):311-316. CHEN Y L, ZHANG Y. Considerations on the calendar life of military aircraft structures[J]. Advances in Aeronautical Science and Engineering, 2010, 1(4):311-316(in Chinese).
[3] 陈跃良, 段成美, 吕国志. 军用飞机日历寿命预测技术研究现状及关键技术问题[J]. 中国工程科学, 2002, 4(4):69-74. CHEN Y L, DUAN C M, LV G Z. Current status and key technique of predictive technique for calendric life of military aircraft[J]. Engineering Science, 2002, 4(4):69-74(in Chinese).
[4] 孙志华,汤智慧,李斌.海洋环境服役飞机的全面腐蚀控制[J].装备环境工程, 2014, 11(6):35-40. SUN Z H,TANG Z H,LI B. Comprehensive corrosion control of naval aircraft[J]. Equipment Environmental Engineering, 2014, 11(6):35-40(in Chinese).
[5] 中国人民解放军总装备部.飞机结构防水和排水设计要求:GJB5431-2005[S]. 北京:中国人民解放军总装备部,2005:1-5. General Armament Department of the Chinese People's Liberation Army. Requirements of design on watertightness and drainage for aircraft structure:GJB5431-2005[S].Beijing:General Armament Department of the Chinese People's Liberation Army,2005:1-5(in Chinese).
[6] 杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2005,19(2):76-80. YANG S J, DAI S L. A glimpse at the development and application of aluminum alloys in aviation industry[J].Materials Review,2005,19(2):76-80(in Chinese).
[7] 姬浩.先进铝合金锻件在大型飞机上应用研究[J].热加工工艺, 2014, 43(11):13-15. JI H. Application research on advanced aluminum alloy forging for large airplane[J]. Hot Working Technology, 2014, 43(11):13-15(in Chinese).
[8] 陈跃良, 王晨光, 张勇,等. 钛-钢螺栓搭接件涂层腐蚀失效分析及影响[J]. 航空学报, 2016, 37(11):3528-3534. CHEN Y L, WANG C G, ZHANG Y,et al. Coating corrosion failure analysis and influence of titanium-steel bolted lap joints[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3528-3534(in Chinese).
[9] 王晨光, 陈跃良, 张勇,等. 表面涂层破损对7B04铝合金点蚀的影响及仿真研究[J]. 航空材料学报, 2016, 36(6):48-53. WANG C G, CHEN Y L, ZHANG Y, et al. Influence and simulation study of surface coating damage on pitting corrosion of 7B04 aluminum alloy[J]. Journal of Aeronautical Materials, 2016, 36(6):48-53(in Chinese).
[10] 张勇, 陈跃良, 樊伟杰,等. 海军飞机清洗剂遴选方法研究[J]. 清洗世界, 2017, 33(11):22-26. ZHANG Y, CHEN Y L, FAN W J, et al. Research and application of the method for naval aircraft cleaning agent selection[J]. Cleaning World, 2017, 33(11):22-26(in Chinese).
[11] USN. Cleaning and corrosion control volume Ⅱ aircraft:Navair 01-1A-509-2[S]. Naval Air Systems Command,2005.
[12] 姜国杰, 杨勇进, 王强,等. YTF-3飞机硬膜缓蚀剂应用研究[J]. 装备环境工程, 2016, 13(1):19-23. JIANG G J, YANG Y J, WANG Q, et al. Application research on ytf-3 aircraft corrosion inhibitor with hard film[J]. Equipment Environment Engineering, 2016, 13(1):19-23(in Chinese).
[13] 张勇, 陈跃良, 樊伟杰,等.×飞机半封闭部位局部环境谱当量加速关系研究[J]. 装备环境工程, 2017(1):24-29. ZHANG Y, CHEN Y L, WAN W J, et al. Equivalent accelerated relationship of local environment spectrum of semi-closed parts of a plane[J]. Equipment Environmental Engineering,2017(1):24-29(in Chinese).
[14] 宋恩鹏, 刘文珽, 杨旭. 飞机内部腐蚀关键部位加速试验环境谱研究[J]. 航空学报, 2006, 27(4):646-649. SONG E P, LIU W T, YANG X. Study on accelerated corrosion test environment spectrum for internal aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):646-649(in Chinese).
[15] 刘文珽, 李玉海, 陈群志,等. 飞机结构腐蚀部位涂层加速试验环境谱研究[J]. 北京航空航天大学学报, 2002, 28(1):109-112. LIU W T, LI Y H, CHEN Q Z, et al. Accelerated corrosion environmental spectrums for testing surface coatings of critical areas of flight aircraft structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1):109-112(in Chinese).
[16] 黄海亮,陈跃良,张柱柱,等.飞机结构常见腐蚀形式仿真研究进展[J].航空学报,2021,42(5):524026. HUANG H L, CHEN Y L, ZHANG Z Z, et al. Research progress of corrosion simulation of aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(5):524026(in Chinese).
[17] 卞贵学, 陈跃良, 黄海亮,等. 飞机用钛-钢搭接件腐蚀仿真预测与验证研究[J]. 表面技术, 2018, 47(10):183-190. BIAN G X, CHEN Y L, HUANG H L, et al. Corrosion prediction and verification of titanium-steel lap joints for aircraft[J]. Surface Technology, 2018, 47(10):183-190(in Chinese).
[18] 卞贵学, 陈跃良, 张勇,等. 基于电偶腐蚀仿真的铝/钛合金在不同浓度酸性NaCl溶液中与水介质中的当量折算系数[J]. 材料导报, 2019, 33(16):119-125. BIAN G X, CHEN Y L, ZHANG Y, et al. Equivalent conversion coefficient of aluminum/titanium alloy between acidic NaCl solution with different concentration and water based on galvanic corrosion simulation[J]. Material Reports, 2019, 33(16):119-125(in Chinese).
[19] 刘马宝, 王巧云, 张勇,等. 铝合金结构腐蚀传感器综述[J]. 装备环境工程, 2014(6):29-34. LIU M B, WANG Q Y, ZHANG Y, et al. Review on corrosion sensors for aluminium alloy structure[J]. Equipment Environmental Engineering, 2014(6):29-34(in Chinese).
[20] 于海蛟, 王逾涯, 陈群志. 飞机结构腐蚀监测技术现状及发展趋势[J]. 装备环境工程, 2014(6):70-78. YU H J, WANG Y Y, CHEN Q Z. Progress and prospect of corrosion monitoring techniques of aircraft structure[J]. Equipment Environmental Engineering, 2014(6):70-78(in Chinese).
文章导航

/